Cinética química

13.1 La velocidad de una reacción
13.2 Ley de la velocidad
13.3 Relación entre la concentración de reactivos y el tiempo
13.4 Constantes de velocidad y su dependencia de la energía de activación y de la temperatura
13.5 Mecanismos de reacción
13.6 Catálisis
AVANCE DEL CAPÍTULO

- Este capítulo da comienzo con la velocidad de una reacción expresada en términos de las concentraciones de los reactivos y productos, y la forma en que la velocidad se relaciona con la estereometría de una reacción. (13.1)
- Después, se podrá ver cómo se define la ley de la velocidad de una reacción de acuerdo con la constante de la velocidad y el orden de reacción. (13.2)
- Luego se analizará la relación entre la concentración de una reacción y el tiempo para los tres tipos de reacciones: de orden cero, de primer orden y de segundo orden. La vida media, que es el tiempo requerido para que la concentración en una reacción disminuya a la mitad de su valor inicial, es útil para distinguir entre reacciones de diferentes órdenes. (13.3)
- Se podrá observar que la velocidad de una reacción siempre se incrementa con la temperatura. La energía de activación, la cual es la cantidad mínima de energía requerida para iniciar una reacción química, también afecta a la velocidad. (13.4)
- Se examinará el mecanismo de una reacción en cuanto a sus pasos elementales y se verá que se puede determinar la ley de la velocidad con base en el paso más lento o paso determinante de velocidad. Se aprenderá cómo verifican los químicos los mecanismos mediante experimentos. (13.5)
- Por último, se estudiará el efecto de un catalizador en la velocidad de una reacción. Se aprenderán las características de la catálisis heterogénea, la catálisis homogénea y la catálisis enzimática. (13.6)

En los capítulos anteriores se han estudiado las definiciones básicas de la química y se han analizado las propiedades de los gases, líquidos, sólidos y disoluciones. Se han descrito algunas propiedades moleculares y se han analizado varios tipos de reacciones con cierto detalle. En este capítulo y en los siguientes se estudiarán más detalladamente las relaciones y las leyes que rigen las reacciones químicas.

¿Cómo se puede predecir si una reacción se llevará o no a cabo? Una vez que una reacción ha iniciado, ¿con cuánta rapidez se produce? ¿Cuánto avanzará la reacción antes de detenerse? Las leyes de la termodinámica (que se estudian en el capítulo 18) ayudan a contestar la primera pregunta. La cinética química, tema de este capítulo, responde la pregunta sobre la velocidad de una reacción. La última pregunta es una de las muchas que se responden mediante el estudio del equilibrio químico, que se analizará en los capítulos 14, 15, 16 y 18.
13.1 La velocidad de una reacción

La cinética química es el área de la química que tiene relación con la rapidez, o velocidad, con que ocurre una reacción química. La palabra "cinética" sugiere movimiento o cambio; en el capítulo 5 se definió la energía cinética como la energía debida al movimiento de un objeto. En este caso, cinética se refiere a la velocidad de reacción, que es el cambio en la concentración de un reactivo o de un producto con respecto del tiempo (M/s).

Hay muchas razones para estudiar la velocidad de una reacción. Para empezar, existe curiosidad intrínseca respecto de la razón por la que las reacciones ocurren a diferentes velocidades. Algunos procesos, como las etapas iniciales de la visión, la fotosíntesis y las reacciones nucleares en cadena, ocurren a una velocidad tan corta como de 10^{-15} s a 10^{-9} s. Otros, como la polimerización del cemento y la conversión del grafito en diamante, necesitan millones de años para completarse. En un nivel práctico, el conocimiento de la velocidad de las reacciones es de gran utilidad para el diseño de fármacos, en el control de la contaminación y en el procesamiento de alimentos. Con frecuencia los químicos industriales ponen más énfasis en el aceleramiento de la velocidad de una reacción que en mejorar su rendimiento.

Se sabe que cualquier reacción puede representarse por la ecuación general

\[\text{reactivos} \rightarrow \text{productos} \]

Esta ecuación expresa que durante el transcurso de una reacción, los reactivos se consumen mientras se forman los productos. Como resultado, es posible seguir el progreso de una reacción al medir, ya sea la disminución en la concentración de los reactivos o el aumento en la concentración de los productos.

En la figura 13.1 se ilustra el progreso de una reacción sencilla donde las moléculas de A se convierten en moléculas de B:

\[A \rightarrow B \]

Recuerde que Δ denota la diferencia entre el estado final y el inicial.

En la figura 13.2 se muestra la disminución del número de moléculas de A y el incremento en el número de moléculas de B con respecto del tiempo. En general, es más conveniente expresar la velocidad de reacción en términos del cambio en la concentración en cuanto al tiempo. Así, para la reacción $A \rightarrow B$, la velocidad se expresa como

\[\text{velocidad} = -\frac{\Delta[A]}{\Delta t} \quad \text{o} \quad \text{velocidad} = \frac{\Delta[B]}{\Delta t} \]

donde $\Delta[A]$ y $\Delta[B]$ son los cambios en la concentración (molaridad) en determinado período de Δt. Debido a que la concentración de A disminuye durante el intervalo de tiempo, $\Delta[A]$ es una cantidad negativa. La velocidad de reacción es una cantidad positiva, de modo que es necesario un signo menos en la expresión de la velocidad para que la velocidad sea po-

Figura 13.1 Avance de la reacción $A \rightarrow B$ a intervalos de 10 s, durante un periodo de 60 s. Inicialmente sólo están presentes las moléculas de A (esferas grises). Al avanzar el tiempo, se forman las moléculas de B (esferas rojas).
13.1 La velocidad de una reacción

Figura 13.2 Velocidad de la reacción $A \rightarrow B$ representada como la disminución de las moléculas de A con el tiempo y como el incremento de las moléculas de B con el tiempo.

La velocidad. Por otra parte, la velocidad de formación del producto no requiere un signo menos porque $\Delta[B]$ es una cantidad positiva (la concentración de B aumenta con el tiempo). Estas velocidades son velocidades promedio porque representan el promedio en cierto periodo Δt.

A continuación se verá cómo se mide en forma experimental la velocidad de una reacción. Por definición, se sabe que para determinar la velocidad de una reacción se mide la concentración del reactivo (o del producto) como una función del tiempo. Para las reacciones en disolución, la concentración de algunas especies se puede medir por métodos espectroscópicos. Si participan iones, el cambio en la concentración también se detecta por mediciones de conductividad eléctrica. Las reacciones con gases se siguen a través de mediciones de presión. Aquí se considerarán dos reacciones específicas para las cuales se utilizan diferentes métodos para medir la velocidad de reacción.

Reacción de bromo molecular y ácido fórmico

En disoluciones acuosas, el bromo molecular reacciona con el ácido fórmico (HCOOH) como sigue:

$$\text{Br}_2(\text{ac}) + \text{HCOOH}(\text{ac}) \rightarrow 2\text{Br}^-(\text{ac}) + 2\text{H}^+(\text{ac}) + \text{CO}_2(\text{g})$$

El bromo molecular tiene un color café rojizo. En la reacción, todas las demás especies son incoloras. A medida que progresa la reacción, la concentración de Br$_2$ disminuye con rapidez, y su color se desvanece (figura 13.3). Esta pérdida de color, y por lo tanto de concentración, se mide fácilmente con un espectrofotómetro, que registra la cantidad de luz visible que absorbe el bromo (figura 13.4).

http://librosysolucionarios.net
La medición del cambio (disminución) de la concentración de bromo desde un tiempo inicial hasta un tiempo final, permite determinar la velocidad promedio de la reacción durante ese intervalo:

\[
\text{velocidad promedio} = -\frac{\Delta [Br_2]}{\Delta t} = -\frac{[Br_2]_{\text{final}} - [Br_2]_{\text{inicial}}}{t_{\text{final}} - t_{\text{inicial}}}
\]

Utilizando los datos de la tabla 13.1 es posible calcular la velocidad promedio del primer intervalo de 50 s como sigue:

\[
\text{velocidad promedio} = \frac{(0.0101 - 0.0120) M}{50.0 s} = 3.80 \times 10^{-5} M/s
\]

Si se selecciona como intervalo de tiempo los primeros 100 s, la velocidad promedio estará dada por:

\[
\text{velocidad promedio} = \frac{(0.00846 - 0.0120) M}{100.0 s} = 3.54 \times 10^{-5} M/s
\]

Estos cálculos demuestran que la velocidad promedio para la reacción depende del intervalo que se selecciona.

Al calcular la velocidad promedio de la reacción a intervalos cada vez más cortos, se obtiene la velocidad en un momento específico, lo que proporciona la velocidad instantánea de la reacción. En la figura 13.5 se presenta la gráfica de \([Br_2]\) contra el tiempo, con base en los datos mostrados en la tabla 13.1. Gráficamente, la velocidad instantánea 100 s después del inicio de la reacción está dada por la pendiente de la tangente a la curva en ese momento. La velocidad instantánea, en cualquier otro momento, se determina en forma semejante. Observe que la velocidad instantánea determinada en esta forma siempre tendrá el mismo valor para la misma concentración de reactivos, en tanto la temperatura se mantenga constante. No es necesario indicar el intervalo de tiempo que se utilizó. A menos que se especifique lo contrario, se hará referencia a la velocidad instantánea simplemente como "la velocidad".

La siguiente analogía ayudará a distinguir entre la velocidad promedio y la velocidad instantánea. La distancia en carretera, desde San Francisco hasta Los Ángeles, es de 512 mi-

![Figura 13.5 Las velocidades instantáneas de la reacción entre el bromo molecular y el ácido fórmico a \(t = 100\) s, 200 s y 300 s están dadas por las pendientes de las tangentes correspondientes a esos tiempos.](http://librosysolucionarios.net)
TABLA 13.1 Velocidades de reacción entre el bromo molecular y el ácido fórmico a 25°C

<table>
<thead>
<tr>
<th>Tiempo (s)</th>
<th>[Br₂] (M)</th>
<th>Velocidad (M/s)</th>
<th>$k = \frac{\text{velocidad}}{[\text{Br}_2]}$ (s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0120</td>
<td>4.20×10^{-5}</td>
<td>3.50×10^{-3}</td>
</tr>
<tr>
<td>50.0</td>
<td>0.0101</td>
<td>3.52×10^{-5}</td>
<td>3.49×10^{-3}</td>
</tr>
<tr>
<td>100.0</td>
<td>0.00846</td>
<td>2.96×10^{-5}</td>
<td>3.50×10^{-3}</td>
</tr>
<tr>
<td>150.0</td>
<td>0.00710</td>
<td>2.63×10^{-5}</td>
<td>3.51×10^{-3}</td>
</tr>
<tr>
<td>200.0</td>
<td>0.00596</td>
<td>2.09×10^{-5}</td>
<td>3.51×10^{-3}</td>
</tr>
<tr>
<td>250.0</td>
<td>0.00500</td>
<td>1.75×10^{-5}</td>
<td>3.50×10^{-3}</td>
</tr>
<tr>
<td>300.0</td>
<td>0.00420</td>
<td>1.48×10^{-5}</td>
<td>3.52×10^{-3}</td>
</tr>
<tr>
<td>350.0</td>
<td>0.00353</td>
<td>1.23×10^{-5}</td>
<td>3.48×10^{-3}</td>
</tr>
<tr>
<td>400.0</td>
<td>0.00296</td>
<td>1.04×10^{-5}</td>
<td>3.51×10^{-3}</td>
</tr>
</tbody>
</table>

llas. Si una persona tarda 11.4 horas en llegar de una ciudad a la otra, la velocidad promedio es 512 millas/11.4 horas, o 44.9 mph. Pero si el automóvil viaja a 55.3 mph durante las primeras 3 h 26 min, entonces la velocidad instantánea del automóvil es 55.3 mph. Observe que la velocidad del automóvil en este ejemplo puede aumentar o disminuir durante el viaje, pero la velocidad instantánea de una reacción siempre disminuye con el tiempo.

La velocidad de la reacción bromo-ácido fórmico también depende de la concentración del ácido fórmico. Sin embargo, al agregar en exceso ácido fórmico a la mezcla de reacción se puede asegurar que la concentración de ácido fórmico permanece prácticamente constante durante el transcurso de la reacción. En estas condiciones, el cambio en la cantidad de ácido fórmico presente en la disolución no tiene efecto alguno en la velocidad medida.

Tómese como ejemplo el efecto que la concentración de bromo ejerce sobre la velocidad de la reacción. Observe los datos de la tabla 13.1. Compare la concentración del Br₂ y la velocidad de reacción a $t = 50$ s y $t = 250$ s. A $t = 50$ s, la concentración de bromo es de 0.0101 M y la velocidad de la reacción es 3.52×10^{-5} M/s. A $t = 250$ s, la concentración del bromo es 0.00500 M y la velocidad de la reacción es 1.75×10^{-3} M/s. La concentración a $t = 50$ es el doble de la concentración a $t = 250$ s (0.0101 M contra 0.00500 M), y la velocidad de la reacción a $t = 50$ s es el doble de la velocidad a $t = 250$ s (3.52×10^{-5} M/s contra 1.75×10^{-3} M/s). Se observa que a medida que la concentración del bromo se duplica, la velocidad de la reacción también lo hace. Por lo tanto, la velocidad es directamente proporcional a la concentración de Br₂, es decir

$$\text{velocidad} \propto \frac{[\text{Br}_2]}{[\text{Br}_2]}$$

donde el término k se conoce como constante de velocidad, una constante de la proporcionalidad entre la velocidad de la reacción y la concentración del reactivo. Esta proporcionalidad directa entre la concentración de Br₂ y la velocidad también se apoya mediante la graficación de los datos.

En la figura 13.6 se presenta una gráfica de la velocidad contra la concentración de Br₂. El hecho de que esta gráfica sea una línea recta indica que la velocidad es directamente proporcional a la concentración; cuanto mayor la concentración, mayor la velocidad. La última ecuación modificada da:

$$k = \frac{\text{velocidad}}{[\text{Br}_2]}$$

Debido a que la velocidad de reacción tiene las unidades M/s y [Br₂] en M, en este caso la unidad de k es 1/s, o s⁻¹. Es importante hacer que la velocidad se defina por la constante de velocidad.
Figura 13.6 Gráfica de la velocidad en relación con la concentración de bromo molecular para la reacción entre el bromo molecular y el ácido fórmico. La relación lineal muestra que la velocidad de reacción es directamente proporcional a la concentración de bromo molecular.

Figura 13.7 La velocidad de la descomposición del peróxido de hidrógeno se puede medir con un manómetro, el cual muestra el incremento en la presión del oxígeno gaseoso con el tiempo. Las flechas muestran los niveles de mercurio en el tubo en U.

centración de Br₂. La velocidad será mayor cuando la concentración sea mayor, y será menor a menores concentraciones de Br₂, pero la relación velocidad/[Br₂] permanece igual en tanto no cambie la temperatura.

A partir de la tabla 13.1 es posible calcular la constante de velocidad para la reacción. Con base en los datos para \(t = 50 \text{ s} \), se escribe

\[
\begin{align*}
 k &= \frac{v \text{elocidad}}{[\text{Br}_2]} \\
 &= \frac{3.52 \times 10^{-5} \text{ M/s}}{0.0101 \text{ M}} = 3.49 \times 10^{-3} \text{ s}^{-1}
\end{align*}
\]

Se pueden utilizar los datos de cualquier valor de \(t \) para calcular \(k \). Las pequeñas variaciones en los valores de \(k \) que se indican en la tabla 13.1 se deben a desviaciones experimentales en las mediciones de velocidad.

Descomposición del peróxido de hidrógeno

Si uno de los productos o reactivos es un gas, se puede utilizar el manómetro para encontrar la velocidad de la reacción. Considere la descomposición del peróxido de hidrógeno a 20°C:

\[
2\text{H}_2\text{O}_2(\text{ac}) \rightarrow 2\text{H}_2\text{O}(l) + \text{O}_2(g)
\]

En este caso, la velocidad de descomposición se determina midiendo la velocidad de formación de oxígeno mediante un manómetro (figura 13.7). La presión de oxígeno puede convertirse fácilmente en concentración utilizando la ecuación de los gases ideales:

\[
P V = nRT
\]

o

\[
P = \frac{n}{V} RT = [\text{O}_2]RT
\]

donde \(n/V \) proporciona la molaridad del oxígeno gaseoso. Al reacomodar la ecuación, se obtiene

\[
[\text{O}_2] = \frac{1}{RT} P
\]

http://librosysolucionarios.net
La velocidad de la reacción, que está dada por la velocidad de producción de oxígeno, ahora puede escribirse como

\[\text{velocidad} = \frac{\Delta [O_2]}{\Delta t} = \frac{1}{RT} \frac{\Delta P}{\Delta t} \]

En la figura 13.8 se muestra el aumento de la presión del oxígeno a lo largo del tiempo y la determinación de la velocidad instantánea a 400 min. Para expresar la velocidad en las unidades comunes de m/s, se convierte mmHg/min en atm/s y después se multiplica la pendiente de la tangente \((\Delta P/\Delta t)\) por \(1/RT\), como se indica en la ecuación anterior.

Velocidades de reacción y estequiometría

Se ha notado que para reacciones con estequiometría sencilla como del tipo \(A \rightarrow B\), la velocidad se expresa ya sea en términos de disminución de la concentración del reactivo con el tiempo, \(-\Delta [A]/\Delta t\), o bien como el aumento de la concentración del producto con el tiempo, \(\Delta [B]/\Delta t\). Para reacciones más complejas, se debe ser muy cuidadoso para escribir la expresión de la velocidad. Considere, por ejemplo, la reacción

\[2A \rightarrow B \]

Desaparecen dos moles de A por cada mol de B que se forma, es decir, la velocidad de desaparición de A es el doble de rápida que la velocidad de aparición de B. La velocidad se expresa como

\[\text{velocidad} = \frac{1}{2} \frac{\Delta [A]}{\Delta t} \quad \text{y} \quad \text{velocidad} = \frac{\Delta [B]}{\Delta t} \]

http://librosysolucionarios.net
En general, para la reacción
\[aA + bB \longrightarrow cC + dD \]
la velocidad está dada por
\[\text{velocidad} = \frac{\Delta[A]}{a \Delta t} - \frac{\Delta[B]}{b \Delta t} - \frac{\Delta[C]}{c \Delta t} + \frac{\Delta[D]}{d \Delta t} \]

Los ejemplos 13.1 y 13.2 muestran la forma de escribir las expresiones de velocidad de la reacción y de calcular las velocidades de formación del producto y de desaparición del reactivo.

Ejemplo 13.1

Escriba las expresiones de la velocidad para las siguientes reacciones, en función de la desaparición de los reactivos y de la aparición de los productos:

a) \[\text{I}^- (aq) + \text{OCl}^- (aq) \longrightarrow \text{Cl}^- (aq) + \text{O}^- (aq) \]

b) \[3\text{O}_2(g) \longrightarrow 2\text{O}_3(g) \]

c) \[4\text{NH}_3(g) + 5\text{O}_2(g) \longrightarrow 4\text{NO}_g + 6\text{H}_2\text{O}(g) \]

Estrategia Para expresar la velocidad de la reacción en función del cambio en la concentración de un reactivo o producto con el tiempo, es necesario utilizar el signo adecuado (menos o más) y el recíproco del coeficiente estequiométrico.

Solución

a) Debido a que todos los coeficientes estequiométricos son iguales a 1,

\[\text{velocidad} = -\frac{\Delta[\text{I}^-]}{\Delta t} - \frac{\Delta[\text{OCl}^-]}{\Delta t} - \frac{\Delta[\text{Cl}^-]}{\Delta t} + \frac{\Delta[\text{O}^-]}{\Delta t} \]

b) Aquí los coeficientes son 3 y 2, por lo que

\[\text{velocidad} = \frac{1}{3} \frac{\Delta[\text{O}_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[\text{O}_3]}{\Delta t} \]

c) En esta reacción

\[\text{velocidad} = \frac{1}{4} \frac{\Delta[\text{NH}_3]}{\Delta t} = \frac{1}{5} \frac{\Delta[\text{O}_2]}{\Delta t} = \frac{1}{4} \frac{\Delta[\text{NO}]}{\Delta t} = \frac{1}{6} \frac{\Delta[\text{H}_2\text{O}]}{\Delta t} \]

Ejercicio de práctica Escribe la expresión de la velocidad para la siguiente reacción:

\[\text{CH}_4(g) + 2\text{O}_2(g) \longrightarrow \text{CO}_2(g) + 2\text{H}_2\text{O}(g) \]

Ejemplo 13.2

Considere la siguiente reacción

\[4\text{NO}_2(g) + \text{O}_2(g) \longrightarrow 2\text{N}_2\text{O}_5(g) \]

Suponga que en un momento determinado durante la reacción, el oxígeno molecular está reaccionando a la velocidad de 0.024 M/s. a) ¿A qué velocidad se está formando el N$_2$O$_5$? b) ¿A qué velocidad está reaccionando el NO$_2$?

(continúa)
Estrategia Para calcular la velocidad de la formación del N_2O_3 y de la desaparición del NO_2, es necesario expresar la velocidad de la reacción en términos de los coeficientes estequiométricos, como se hizo en el ejemplo 13.1:

\[
\text{velocidad} = \frac{1}{4} \frac{\Delta [\text{NO}_2]}{\Delta t} = \frac{\Delta [\text{O}_2]}{\Delta t} = \frac{1}{2} \frac{\Delta [\text{N}_2\text{O}_3]}{\Delta t}
\]

Se tiene

\[
\frac{\Delta [\text{O}_2]}{\Delta t} = -0.024 \text{ M/s}
\]

donde el signo menos muestra que la concentración del O_2 está disminuyendo con el tiempo.

Solución a) A partir de la expresión de velocidad anterior se tiene

\[
-\frac{\Delta [\text{O}_2]}{\Delta t} = \frac{1}{2} \frac{\Delta [\text{N}_2\text{O}_3]}{\Delta t}
\]

Por lo tanto,

\[
\frac{\Delta [\text{N}_2\text{O}_3]}{\Delta t} = -2(-0.024 \text{ M/s}) = 0.048 \text{ M/s}
\]

b) Aquí se tiene

\[
\frac{1}{4} \frac{\Delta [\text{NO}_2]}{\Delta t} = \frac{\Delta [\text{O}_2]}{\Delta t}
\]

de manera que

\[
\frac{\Delta [\text{NO}_2]}{\Delta t} = 4(-0.024 \text{ M/s}) = -0.096 \text{ M/s}
\]

Ejercicio de práctica Considere la reacción

\[4\text{PH}_3(g) \longrightarrow \text{P}_4(g) + 6\text{H}_2(g)\]

Suponga que, en un momento determinado durante la reacción, se está formando el hidrógeno molecular a una velocidad de 0.078 M/s. a) ¿A qué velocidad se está formando el P_4? b) ¿A qué velocidad está reaccionando el PH_3?

13.2 Ley de la velocidad

Anteriormente se aprendió que la velocidad de una reacción es proporcional a la concentración de reactivos y que la constante de proporcionalidad k recibe el nombre de constante de velocidad. La ley de la velocidad expresa la relación de la velocidad de una reacción con la constante de velocidad y la concentración de los reactivos, elevados a alguna potencia. Para la reacción general

\[aA + bB \longrightarrow cC + dD\]

la ley de la velocidad tiene la forma

\[
\text{velocidad} = k[A]^x[B]^y
\]

(13.1)

donde x y y son números que se determinan experimentalmente. Observe que, en general, x y y no son iguales a los coeficientes estequiométricos de A y B. Cuando x y y son iguales a los valores
de x y y y k se puede utilizar la ecuación (13.1) para calcular la velocidad de la reacción, dados las concentraciones de A y B.

Los exponentes x y y específican las relaciones entre las concentraciones de los reactivos A y B y la velocidad de la reacción. Al sumarlos, se obtiene el orden de reacción global, que se define como la suma de los exponenates a los que se elevan todas las concentraciones de reactivos que aparecen en la ley de velocidad. Para la ecuación (13.1), el orden de reacción global es $x + y$. De manera alternativa puede decirse que la reacción es de orden x en A, de orden y en B y de orden $(x + y)$ en A.

Para determinar la ley de la velocidad de una reacción, considere la reacción entre el flúor y el dióxido de cloro:

$$\text{F}_2(g) + 2\text{ClO}_2(g) \rightarrow 2\text{FClO}_3(g)$$

Una forma de estudiar el efecto de la concentración de los reactivos sobre la velocidad de la reacción es determinando la dependencia de la velocidad inicial de las concentraciones iniciales. Es preferible medir las velocidades iniciales, ya que, según procede la reacción, disminuyen las concentraciones de los reactivos y entonces resulta difícil medir los cambios con exactitud. También puede ocurrir una reacción inversa del tipo

productos \rightarrow reactivos

la cual introduce un error en la medición de la velocidad. Ambas complicaciones están ausentes durante las primeras etapas de la reacción.

La tabla 13.2 muestra tres mediciones de la velocidad para la formación de FClO₃. Si se observan los valores de 1 y 3, se nota que, al duplicarse [F₂] mientras se mantiene constante [ClO₂], la velocidad de la reacción se duplica. Así, la velocidad es directamente proporcional a [F₂]. De forma semejante, los datos de 1 y 2 muestran que al cuadruplicar [ClO₂], manteniendo [F₂] constante, la velocidad aumenta cuatro veces, por lo que la velocidad también es directamente proporcional a [ClO₂]. Estas observaciones se resumen escribiendo la ley de la velocidad como

$$\text{velocidad} = k [\text{F}_2][\text{ClO}_2]$$

Debido a que tanto [F₂] como [ClO₂] están elevados a la primera potencia, la reacción es de primer orden respecto de F₂, de primer orden respecto a ClO₂ y (1 + 1) o segundo orden global. Observe que [ClO₂] está elevado a la potencia 1 a pesar de que su coeficiente estequiométrico en la ecuación global es 2. La igualdad entre el orden de reacción (primero) y el coeficiente estequiométrico (1) respecto de F₂ en este caso es una coincidencia.

A partir de las concentraciones de los reactivos y de la velocidad inicial, también es posible calcular la constante de la velocidad. Utilizando los primeros datos de la tabla 13.2, se escribe

$$k = \frac{\text{velocidad}}{[\text{F}_2][\text{ClO}_2]} = \frac{1.2 \times 10^{-3} \text{M/s}}{(0.10 \text{M})(0.010 \text{M})} = 1.2/M\cdot s$$

<table>
<thead>
<tr>
<th>[F₂] (M)</th>
<th>[ClO₂] (M)</th>
<th>Velocidad inicial (M/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 x 10⁻³</td>
<td>0.010</td>
<td>1.2 x 10⁻³</td>
</tr>
<tr>
<td>2.0 x 10⁻³</td>
<td>0.020</td>
<td>4.8 x 10⁻³</td>
</tr>
<tr>
<td>3.0 x 10⁻³</td>
<td>0.010</td>
<td>2.4 x 10⁻³</td>
</tr>
</tbody>
</table>
El orden de reacción permite comprender la dependencia de la reacción con las concentraciones de los reactivos. Suponga, por ejemplo, que para la reacción general \(aA + bB \rightarrow cC + dD \) se tiene \(x = 1 \) y \(y = 2 \). La ley de velocidad para la reacción es [vea la ecuación (13.1)]

\[
\text{velocidad} = k[A]^x[B]^y
\]

Esta reacción es de primer orden en A, de segundo orden en B y de tercer orden global \((1 + 2 = 3)\). Suponga que inicialmente \([A] = 1.0 \, M\) y \([B] = 1.0 \, M\). La ley de la velocidad indica que si se duplica la concentración de A, de \(1.0 \, M\) a \(2.0 \, M\), a [B] constante, la velocidad de la reacción también se duplica:

\[
\text{para } [A] = 1.0 \, M \quad \text{velocidad}_1 = k(1.0 \, M)(1.0 \, M)^2 = k(1.0 \, M^3)
\]

\[
\text{para } [A] = 2.0 \, M \quad \text{velocidad}_2 = k(2.0 \, M)(1.0 \, M)^2 = k(2.0 \, M^3)
\]

Por lo tanto,

\[
\text{velocidad}_2 = 2(\text{velocidad}_1)
\]

Por otro lado, si se duplica la concentración de B de \(1.0 \, M\) a \(2.0 \, M\) con \([A] = 1 \, M\) constante, la velocidad se incrementará por un factor de 4 debido a la potencia 2 en el exponente:

\[
\text{para } [B] = 1.0 \, M \quad \text{velocidad}_1 = k(1.0 \, M)(1.0 \, M)^2 = k(1.0 \, M^3)
\]

\[
\text{para } [B] = 2.0 \, M \quad \text{velocidad}_2 = k(1.0 \, M)(2.0 \, M)^2 = k(4.0 \, M^3)
\]

Por lo tanto,

\[
\text{velocidad}_2 = 4(\text{velocidad}_1)
\]

En caso de que, para cierta reacción, \(x = 0\) y \(y = 1\), la ecuación de la velocidad es

\[
\text{velocidad} = k[A]^0[B] = k[B]
\]

Esta reacción es de orden cero en A, de primer orden en B y de primer orden global. El exponente cero indica que la velocidad de esta reacción es independiente de la concentración de A. Observe que el orden de una reacción también puede ser fraccionario.

Los siguientes puntos resumen el estudio de la ley de la velocidad:

1. Las leyes de la velocidad siempre se determinan en forma experimental. A partir de las concentraciones de los reactivos y de la velocidad inicial es posible determinar el orden de una reacción y, entonces, la constante de velocidad de la reacción.

2. El orden de una reacción siempre se define en términos de las concentraciones de los reactivos (no de los productos).

3. El orden de un reactivo no se relaciona con el coeficiente estequiométrico del reactivo en la reacción global balanceada.

En el ejemplo 13.3 se muestra el procedimiento para la determinación de la ley de velocidad de una reacción.

Ejemplo 13.3

La reacción del óxido nítrico con hidrógeno a 1280°C es

\[
2\text{NO}(g) + 2\text{H}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g)
\]

(continúa)
A partir de los siguientes datos, medidos a dicha temperatura, determine: a) la ley de la velocidad, b) su constante de velocidad y c) la velocidad de la reacción cuando \([NO] = 12.0 \times 10^{-3}\) \(M\) y \([H_2] = 6.0 \times 10^{-3}\) \(M\).

<table>
<thead>
<tr>
<th>Experimento</th>
<th>([NO] (M))</th>
<th>([H_2] (M))</th>
<th>Velocidad inicial (M/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(5.0 \times 10^{-3})</td>
<td>(2.0 \times 10^{-3})</td>
<td>(1.3 \times 10^{-5})</td>
</tr>
<tr>
<td>2</td>
<td>(10.0 \times 10^{-3})</td>
<td>(2.0 \times 10^{-3})</td>
<td>(5.0 \times 10^{-5})</td>
</tr>
<tr>
<td>3</td>
<td>(10.0 \times 10^{-3})</td>
<td>(4.0 \times 10^{-3})</td>
<td>(10.0 \times 10^{-5})</td>
</tr>
</tbody>
</table>

Estrategia Se ofrece un conjunto de datos de velocidades de reacción y de concentración y se pide que se determine la ley de velocidad y la constante de velocidad. Se supone que la ley de velocidad tiene la forma de:

\[
velocidad = k[NO]^x[H_2]^y
\]

¿Cómo se utilizan estos datos para determinar \(x\) y \(y\)? Una vez que se conoce el orden para los reactivos, se puede calcular \(k\) a partir de cualquier conjunto de velocidades y concentraciones. Por último, la ley de velocidad permite calcular la velocidad a cualquier concentración de NO y H₂.

Solución a) Los experimentos 1 y 2 muestran que cuando se duplica la concentración de NO a una concentración constante de H₂, la velocidad se cuadruplica. Si se toma la proporción de las velocidades a partir de estos dos experimentos

\[
\frac{velocidad_2}{velocidad_1} = \frac{5.0 \times 10^{-5}}{1.3 \times 10^{-5}} M/s = 4 = \left(\frac{10.0 \times 10^{-3}}{5.0 \times 10^{-3}} M\right)^x
\]

Por lo tanto,

\[
\frac{(10.0 \times 10^{-3})^y}{(5.0 \times 10^{-3})^y} \times 2^y = 4
\]

\(o\ x = 2,\) es decir, la reacción es de segundo orden en NO. Los experimentos 2 y 3 indican que al duplicar \([H_2]\) a \([NO]\) constante se duplica la velocidad. Aquí se escribe la velocidad como

\[
velocidad_3 = \frac{10.0 \times 10^{-5}}{5.0 \times 10^{-5}} M/s = 2 = \frac{k(10.0 \times 10^{-3})^y(4.0 \times 10^{-3})^y}{k(10.0 \times 10^{-3})^y(2.0 \times 10^{-3})^y}
\]

Por lo tanto,

\[
\frac{(4.0 \times 10^{-3})^y}{(2.0 \times 10^{-3})^y} = 2^y = 2
\]

\(o\ y = 1,\) es decir, la reacción es de primer orden en H₂. Por lo tanto, la ley de velocidad está dada por

\[
velocidad = k[NO]^2[H_2]
\]

lo que muestra que es una reacción de tipo \((2 + 1)\) o de tercer orden global.

b) La constante de la velocidad \(k\) se calcula utilizando los valores de cualquiera de los experimentos. Debido a que

\[
k = \frac{velocidad}{[NO]^2[H_2]}
\]

(continúa)
Los datos del experimento 2 dan como resultado

\[
k = \frac{5.0 \times 10^{-3} \text{ M/s}}{(10.0 \times 10^{-3} \text{ M})^2(2.0 \times 10^{-3} \text{ M})} = 2.5 \times 10^{7} \text{ M}^{-2} \text{ s}^{-1}
\]

c) Utilizando la constante de velocidad conocida y las concentraciones de NO y H₂, se escribe

\[
\text{velocidad} = (2.5 \times 10^{7} \text{ M}^{-2} \text{ s}^{-1})(12.0 \times 10^{-3} \text{ M})^2(6.0 \times 10^{-3} \text{ M}) = 2.2 \times 10^{-6} \text{ M/s}
\]

Comentario Observe que la reacción es de primer orden en relación con H₂, a pesar de que el coeficiente estequiométrico de H₂ en la ecuación balanceada es 2. El orden de un reactivo no está relacionado con el coeficiente estequiométrico del reactivo en la ecuación global balanceada.

Ejercicio de práctica La reacción del ion peroxidisulfato \(S_2O_8^{2-}\) con el ion yoduro (I⁻) es

\[S_2O_8^{2-}(ac) + 3I^-(ac) \rightarrow 2SO_4^{2-}(ac) + I_3^-(ac)\]

A partir de los siguientes valores, medidos a cierta temperatura, determine la ley de velocidad y calcule su constante de velocidad.

<table>
<thead>
<tr>
<th>Experimento</th>
<th>([S_2O_8^{2-}] (M))</th>
<th>([I^-] (M))</th>
<th>Velocidad inicial (M/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.080</td>
<td>0.034</td>
<td>(2.2 \times 10^{-6})</td>
</tr>
<tr>
<td>2</td>
<td>0.080</td>
<td>0.017</td>
<td>(1.1 \times 10^{-6})</td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>0.017</td>
<td>(2.2 \times 10^{-6})</td>
</tr>
</tbody>
</table>

13.3 Relación entre la concentración de reactivos y el tiempo

Las expresiones de las leyes de la velocidad permiten calcular la velocidad de una reacción a partir de la constante de velocidad y de la concentración de los reactivos. Las leyes de la velocidad también se utilizan para determinar las concentraciones de los reactivos en cualquier momento durante el curso de una reacción. Se mostrará esta aplicación considerando dos de los tipos más sencillos de leyes de velocidad, las que se aplican a las reacciones de primer orden global y las que se aplican a reacciones de segundo orden global.

Reacciones de primer orden

Una reacción de primer orden es una reacción cuya velocidad depende de la concentración de los reactivos elevada a la primera potencia. En una reacción de primer orden del tipo

\[A \rightarrow \text{ producto}\]

la velocidad es

\[
\text{velocidad} = -\frac{\Delta[A]}{\Delta t}
\]

A partir de la ley de la velocidad, también se sabe que

\[
\text{velocidad} = k[A]
\]
Para obtener las unidades de k, para esta ley de velocidad, se escribe

$$k = \frac{\text{velocidad}}{[A]} = \frac{M/s}{M} = 1/s \cdot s^{-1}$$

Al combinar las dos primeras ecuaciones para la velocidad, se obtiene

$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

(13.2)

Mediante el cálculo, partiendo de la ecuación (13.2), es posible demostrar que

$$\ln \frac{[A]_t}{[A]_0} = -kt$$

(13.3)

donde \ln es el logaritmo natural, y $[A]_0$ y $[A]_t$ son las concentraciones de A a los tiempos $t = 0$ y $t = t$, respectivamente. Debe aclararse que $t = 0$ no corresponde forzosamente al inicio del experimento; puede seleccionarse cualquier tiempo para empezar a medir el cambio en la concentración de A.

La ecuación (13.3) se reordena como sigue:

$$\ln [A]_t = -kt + \ln [A]_0$$

(13.4)

La ecuación (13.4) tiene la forma de la ecuación de una recta, $y = mx + b$, en donde m es la pendiente de la recta de la gráfica de la ecuación:

$$\ln [A]_t = (-k)(t) + \ln [A]_0$$

$$y = m \cdot x + b$$

Considere la figura 13.9. Como se podría esperar durante el curso de una reacción, la concentración del reactivo A disminuye con el tiempo (figura 13.9a). Para una reacción de primer orden, si se elabora una gráfica de $\ln [A]$, contra el tiempo (y contra x), se obtiene una recta con una pendiente igual a $-k$ y una intersección de y igual a $\ln [A]_0$ (figura 13.9b). Por lo tanto, se puede calcular la constante de la velocidad con base en la pendiente de esta gráfica.

Existen muchas reacciones de primer orden. Un ejemplo lo constituye la descomposición de etano (C_2H_6) en fragmentos muy reactivos denominados radicales metilo (CH_3):

$$C_2H_6 \longrightarrow 2CH_3$$

Figura 13.9 Características de una reacción de primer orden:
- a) disminución de la concentración del reactivo con el tiempo;
- b) gráfica de $\ln [A]$, contra t. La pendiente de la línea es igual a $-k$.

http://librosysolucionarios.net
La descomposición de N₂O₅ también es una reacción de primer orden

\[2\text{N}_2\text{O}_5(g) \rightarrow 4\text{NO}_2(g) + \text{O}_2(g) \]

En el ejemplo 13.4 se aplica la ecuación (13.3) para una reacción orgánica.

Ejemplo 13.4

La conversión de ciclopreno en propeno en fase gaseosa es una reacción de primer orden, con una constante de velocidad de 6.7×10^{-4} s$^{-1}$ a 500°C.

\[\text{CH}_2\text{CH}_2\text{CH}_2 \rightarrow \text{CH}_3\text{CH}==\text{CH}_2 \]

(a) Si la concentración inicial de ciclopreno fue 0.25 M, ¿cuál será su concentración después de 8.8 min? (b) ¿Cuánto tiempo tendrá que transcurrir para que la concentración de ciclopreno disminuya desde 0.25 M hasta 0.15 M? (c) ¿Cuánto tiempo tomará transformar 74% del material inicial?

Estrategia La relación entre las concentraciones de un reactivo a diferentes tiempos en una reacción de primer orden está dada por la ecuación (13.3) o (13.4). En (a) se tiene que $[A]_0 = 0.25$ M y se pide que se encuentre el valor de $[A]_t$ después de 8.8 min. En (b) se pide que se calcule el tiempo que le toma al ciclopreno disminuir su concentración de 0.25 M a 0.15 M. En (c) no se dan valores de concentración. Sin embargo, si inicialmente se tiene 100% del compuesto y reacciona 74%, entonces la cantidad restante debe ser (100% - 74%) o 26%. Por lo tanto, la proporción de los porcentajes será igual a la proporción de las concentraciones reales; es decir, $[A]/[A]_0 = 26%/100% = 0.26/1.00$.

Solución (a) Al aplicar la ecuación (13.4), se observa que debido a que el valor de k está dado en unidades de s$^{-1}$, primero se deben convertir 8.8 min en segundos:

\[8.8 \text{ min} \times \frac{60 \text{ s}}{1 \text{ min}} = 528 \text{ s} \]

Se escribe

\[\ln [A]_t = -kt + \ln [A]_0 \]

\[= -(6.7 \times 10^{-4} \text{ s}^{-1})(528 \text{ s}) + \ln (0.25) \]

\[= -1.74 \]

Por lo tanto,

\[[A]_t = e^{-1.74} = 0.18 M \]

Observe que en el término $[A]_0$, $[A]_0$ está expresado como una cantidad adimensional (0.25) debido a que no se puede obtener el logaritmo de las unidades.

(b) Usando la ecuación (13.3),

\[\ln \frac{0.15 \text{ M}}{0.25 \text{ M}} = -(6.7 \times 10^{-4} \text{ s}^{-1})t \]

\[t = 7.6 \times 10^2 \text{ s} \times \frac{1 \text{ min}}{60 \text{ s}} \]

\[= 13 \text{ min} \]

(continúa)
A partir de la ecuación (13.3),

\[
\ln \frac{0.26}{1.00} = -(6.7 \times 10^{-4} \text{s}^{-1}) t
\]

\[
t = 2.0 \times 10^3 \text{s} \times \frac{1 \text{min}}{60 \text{s}} = 33 \text{ min}
\]

Ejercicio de práctica La reacción \(2A \rightarrow B\) es de primer orden en relación con \(A\), con una constante de velocidad de \(2.8 \times 10^{-2} \text{s}^{-1}\) a 80°C. ¿Cuánto tiempo tomará (en segundos) para que \(A\) disminuya desde 0.88 \(M\) hasta 0.14 \(M\)?

A continuación se determinará gráficamente el orden y la constante de velocidad de la descomposición del pentóxido de dinitrógeno en el disolvente tetracloruro de carbono (CCL₂) a 45°C:

\[2\text{N}_2\text{O}_5\text{(CCL}_2\text{)} \rightarrow 4\text{NO}_2\text{(g)} + \text{O}_2\text{(g)}\]

En la siguiente tabla se muestran la variación de la concentración de \(\text{N}_2\text{O}_5\) con el tiempo y los valores correspondientes de \(\ln [\text{N}_2\text{O}_5]\):

<table>
<thead>
<tr>
<th>(t) (s)</th>
<th>([\text{N}_2\text{O}_5]) (M)</th>
<th>(\ln [\text{N}_2\text{O}_5])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.91</td>
<td>-0.094</td>
</tr>
<tr>
<td>300</td>
<td>0.75</td>
<td>-0.29</td>
</tr>
<tr>
<td>600</td>
<td>0.64</td>
<td>-0.45</td>
</tr>
<tr>
<td>1200</td>
<td>0.44</td>
<td>-0.82</td>
</tr>
<tr>
<td>3000</td>
<td>0.16</td>
<td>-1.83</td>
</tr>
</tbody>
</table>

Al aplicar la ecuación (13.4), se traza \(\ln [\text{N}_2\text{O}_5]\) con respecto a \(t\), como se muestra en la figura 13.10. El hecho de que los puntos caigan en una recta, demuestra que la ley de velocidad es de primer orden. A continuación se determina la constante de velocidad a partir de la pendiente. Se seleccionan dos puntos de la línea, alejados entre sí, y se obtienen los valores \(y\) y \(x\) como sigue:

pendiente \((m) = \frac{\Delta y}{\Delta x}\)

\[\frac{-1.50 - (-0.34)}{(2430 - 400) \text{s}} = -5.7 \times 10^{-4} \text{s}^{-1}\]

Debido a que \(m = -k\), se tiene \(k = 5.7 \times 10^{-4} \text{s}^{-1}\).

Para reacciones en fase gaseosa se pueden reemplazar los términos de concentración de la ecuación (13.3) con las presiones de los reactivos gaseosos. Considere la reacción de primer orden

\[\text{A(g)} \rightarrow \text{producto}\]

Utilizando la ecuación de los gases ideales, se escribe

\[PV = n_A RT\]

\[\frac{n_A}{V} = \frac{P}{RT}\]
Al sustituir \([A] = P/RT\) en la ecuación (13.3), se tiene

\[
\ln \frac{[A]_t}{[A]_0} = \ln \frac{P_t/RT}{P_0/RT} = \ln \frac{P_t}{P_0} = -kt
\]

La ecuación correspondiente a la ecuación (13.4) se convierte en

\[
\ln P_t = -kt + \ln P_0
\]

(13.5)

En el ejemplo 13.5 se muestra el uso de mediciones de presión para el estudio de la cinética de una reacción de primer orden.

Ejemplo 13.5

Se estuda la velocidad de descomposición del azometano midiendo la presión parcial del reactivo, en función del tiempo:

\[
\text{CH}_3\text{N}==\text{N}==\text{CH}_3(g) \rightarrow \text{N}_2(g) + \text{C}_2\text{H}_6(g)
\]

En la siguiente tabla se muestran los valores obtenidos a 300°C.

<table>
<thead>
<tr>
<th>Tiempo (s)</th>
<th>Presión parcial del azometano (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>284</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
</tr>
<tr>
<td>150</td>
<td>193</td>
</tr>
<tr>
<td>200</td>
<td>170</td>
</tr>
<tr>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>300</td>
<td>132</td>
</tr>
</tbody>
</table>

¿Estos valores son congruentes con una cinética de primer orden? De serlo, determine la constante de velocidad.

(continúa)
Figura 13.11 Gráfica de $\ln P_t$ en relación con el tiempo de descomposición del azometano.

Estrategia Para comprobar si estos valores son congruentes con una cinética de primer orden, se considerará que la ley de velocidad de primer orden integrada tiene una forma lineal, la cual es la ecuación (13.4)

$$\ln [A]_t = -kt + \ln [A]_0$$

Si la reacción es de primer orden, entonces una gráfica de $[A]$, contra t (y contra x) producirá una recta con una pendiente igual a $-k$. Observe que la presión parcial de azometano en cualquier tiempo es directamente proporcional a su concentración en moles por litro ($PV = nRT$, de manera que, $P \propto n/V$). Por lo tanto, se sustituye la presión parcial para encontrar el valor de la concentración [ecuación (13.5)]:

$$\ln P_t = -kt + \ln P_0$$

donde P_0 y P_t son las presiones parciales del azometano a $t = 0$ y $t = t$, respectivamente.

Solución Primero se construye la siguiente tabla de t contra $\ln P_t$:

<table>
<thead>
<tr>
<th>t (s)</th>
<th>$\ln P_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.649</td>
</tr>
<tr>
<td>100</td>
<td>5.394</td>
</tr>
<tr>
<td>150</td>
<td>5.263</td>
</tr>
<tr>
<td>200</td>
<td>5.136</td>
</tr>
<tr>
<td>250</td>
<td>5.011</td>
</tr>
<tr>
<td>300</td>
<td>4.883</td>
</tr>
</tbody>
</table>

La figura 13.11, que se basa en los valores de la tabla, muestra que la gráfica de $\ln P_t$ en relación con t produce una recta, por lo que la reacción es de primer orden. La pendiente de la recta está dada por

$$\text{pendiente} = \frac{5.05 - 5.56}{(233 - 33) \text{ s}} = -2.55 \times 10^{-3} \text{ s}^{-1}$$

De acuerdo con la ecuación (13.4), la pendiente es igual a $-k$, por lo que $k = 2.55 \times 10^{-3} \text{ s}^{-1}$.

Ejercicio de práctica El yoduro de etilo (C_2H_5I) en fase gaseosa se descompone a cierta temperatura como se indica a continuación:

$$C_2H_5I(g) \rightarrow C_2H_4(g) + HI(g)$$

A partir de los siguientes datos, determine el orden de la reacción y la constante de velocidad.

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>$[C_2H_5I] (M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.36</td>
</tr>
<tr>
<td>15</td>
<td>0.30</td>
</tr>
<tr>
<td>30</td>
<td>0.25</td>
</tr>
<tr>
<td>48</td>
<td>0.19</td>
</tr>
<tr>
<td>75</td>
<td>0.13</td>
</tr>
</tbody>
</table>

http://librosysolucionarios.net
Vida media de reacción

A medida que procede una reacción, la concentración del reactivo o de los reactivos disminuye. Otra medición de la velocidad de una reacción, que se relaciona con la concentración y el tiempo, es la vida media, $t_1/2$, que es el tiempo requerido para que la concentración de uno de los reactivos disminuya a la mitad de su concentración inicial. Se puede obtener una expresión de $t_1/2$ para una reacción de primer orden de la siguiente manera. A partir de la ecuación (13.3) se escribe

$$t = \frac{1}{k} \ln \left(\frac{[A]_0}{[A]} \right)$$

Por la definición de vida media, cuando $t = t_1/2$, $[A] = [A]_0/2$, por lo que

$$t_{1/2} = \frac{1}{k} \ln \left(\frac{[A]_0}{[A]_0/2} \right)$$

$$t_{1/2} = \frac{1}{k} \ln 2 = \frac{0.693}{k}$$

La ecuación (13.6) indica que la vida media de una reacción de primer orden es independiente de la concentración inicial del reactivo. Por lo tanto, toma el mismo tiempo para que la concentración del reactivo disminuya desde 1.0 M hasta 0.5 M o que disminuya desde 0.10 M hasta 0.050 M (figura 13.12). La medición de la vida media de una reacción es una forma de determinar la constante de velocidad de una reacción de primer orden.
La siguiente analogía resulta de utilidad en la comprensión de la ecuación (13.6). La duración de una carrera de licenciatura, suponiendo que el estudiante no pierda tiempo, es de cuatro años. Así que la vida media de su estancia en la universidad es de dos años. Esta vida media no se ve afectada por el número de estudiantes inscritos. De forma semejante, la vida media de una reacción de primer orden es independiente de la concentración.

La utilidad de t_1 es que proporciona una aproximación de la magnitud de la constante de velocidad: cuanto menor sea la vida media, mayor será k. Considere, por ejemplo, dos isótopos radiactivos utilizados en medicina nuclear: 24Na ($t_1 = 14.7$ h) y 60Co ($t_1 = 5.3$ años). Es obvio que la desintegración del isótopo 24Na es más rápida porque tiene una vida media menor. Si se inicia con 1 mol de cada uno de los isótopos, la mayor parte del 24Na se habrá terminado en una semana, en tanto que la muestra de 60Co permanecerá casi intacta.

En el ejemplo 13.6 se calcula la vida media de una reacción de primer orden.

Ejemplo 13.6
La descomposición del etano (C_2H_6) en radicales metilo es una reacción de primer orden, cuya constante de velocidad es $5.36 	imes 10^{-4}$ s$^{-1}$ a 700°C:

$$C_2H_6(g) \rightarrow 2CH_3(g)$$

Calcule la vida media de la reacción en minutos.

Estrategia Para calcular la vida media de una reacción de primer orden se necesita la ecuación (13.6). Es preciso realizar una conversión para expresar la vida media en minutos.

Solución Para una reacción de primer orden sólo se necesita la constante de velocidad para calcular la vida media de la reacción. Con base en la ecuación (13.6)

$$t_1 = \frac{k}{0.693} = \frac{0.693}{5.36 \times 10^{-4} s^{-1}} = 1.29 \times 10^3 s \times \frac{1 \text{ min}}{60 s} = 21.5 \text{ min}$$

Ejercicio de práctica Calcule la vida media de la descomposición de N$_2$O$_5$, estudiada en la página 564.

Reacciones de segundo orden
Una reacción de segundo orden es una reacción cuya velocidad depende de la concentración de uno de los reactivos, elevada a la segunda potencia, o de la concentración de dos reactivos diferentes, cada uno elevado a la primera potencia. El tipo más sencillo comprende sólo una clase de molécula como reactivo:

$$A \rightarrow \text{ producto}$$
donde

\[\text{velocidad} = \frac{\Delta [A]}{\Delta t} \]

A partir de la ley de velocidad

\[\text{velocidad} = k[A]^2 \]

Como se vio antes, las unidades de \(k \) se determinan escribiendo

\[k = \frac{\text{velocidad}}{[A]^2} = \frac{M/s}{M^2} = 1/M \cdot s \]

Otro tipo de reacción de segundo orden es

\[A + B \rightarrow \text{producto} \]

y la ley de velocidad está dada por

\[\text{velocidad} = k[A][B] \]

La reacción es de primer orden en relación con A y de primer orden en relación con B, por lo que tiene un orden global de 2.

Mediante el cálculo, se obtiene la siguiente expresión para las reacciones de segundo orden del tipo “\(A + B \rightarrow \) producto”:

\[\frac{1}{[A]_t} = kt + \frac{1}{[A]_0} \quad (13.7) \]

La ecuación (13.7) tiene la forma de una ecuación lineal. Como muestra la figura 13.13, una gráfica de \(1/[A] \) en relación con \(t \) forma una recta con una pendiente \(= k \) y la intersección \(y = 1/[A]_0 \). (La ecuación correspondiente para las reacciones del tipo “\(A + B \rightarrow \) producto” es demasiado compleja para el presente análisis.)

Se puede obtener una ecuación para la vida media de una reacción de segundo orden al establecer \([A]_t = [A]_0/2 \) en la ecuación (13.7).

\[\frac{1}{[A]_0/2} = kt + \frac{1}{[A]_0} \]

Al despejar para \(t \) se obtiene

\[t = \frac{1}{k[A]_0} \quad (13.8) \]

Observe que la vida media de una reacción de segundo orden es inversamente proporcional a la concentración inicial del reactivo. Este resultado es lógico porque la vida media debe ser menor en las primeras etapas de la reacción, ya que están presentes más moléculas de reactivo que chocan entre sí. Realizar mediciones de la vida media a diferentes concentraciones iniciales es una forma de distinguir entre una reacción de primer orden y una de segundo orden.
En el ejemplo 13.7 se muestra el análisis cinético de la reacción de segundo orden.

Ejemplo 13.7

En fase gaseosa, los átomos de yodo se combinan para formar yodo molecular.

\[\text{I}(g) + \text{I}(g) \rightarrow \text{I}_2(g) \]

Esta reacción sigue una cinética de segundo orden y tiene el alto valor de constante de velocidad de \(7.0 \times 10^6 / \text{M} \cdot \text{s} \) a 23°C. a) Si la concentración inicial de I es de 0.086 M, calcule la concentración después de 2.0 min. b) Calcule la vida media de la reacción si la concentración inicial de I es 0.60 M, y si es de 0.42 M.

Estrategia a) La relación entre la concentración de un reactivo a diferentes tiempos está dada por la integral de la ley de la velocidad. Debido a que se trata de una reacción de segundo orden, se utiliza la ecuación (13.7). b) Se pide calcular la vida media. La vida media para una reacción de segundo orden está dada por la ecuación (13.8).

Solución a) Para calcular la concentración de una especie de una reacción de segundo orden, a determinado tiempo, se necesita la concentración inicial y la constante de velocidad. Se utiliza la ecuación (13.7)

\[
\frac{1}{[A_t]} = \frac{1}{[A_0]} + \frac{1}{(7.0 \times 10^6 / \text{M} \cdot \text{s})(2.0 \min \times \frac{60 \text{s}}{1 \text{min}})}
\]

\[
[\text{A}]_t = \frac{1}{1.2 \times 10^{-12} \text{M}}
\]

b) Para esta parte se necesita la ecuación (13.8).

Para \([\text{I}]_0 = 0.60 \text{ M}\)

\[
\frac{1}{[\text{I}]} = \frac{1}{4[\text{I}]} + \frac{1}{(7.0 \times 10^6 / \text{M} \cdot \text{s})(0.60 \text{ M})}
\]

\[
[\text{I}] = \frac{2.4 \times 10^{-10}}{s}
\]

Para \([\text{I}]_0 = 0.42 \text{ M}\)

\[
\frac{1}{[\text{I}]} = \frac{1}{(7.0 \times 10^6 / \text{M} \cdot \text{s})(0.42 \text{ M})}
\]

\[
= \frac{3.4 \times 10^{-10}}{s}
\]

Verificación Estos resultados confirman que la vida media de una reacción de segundo orden no es constante, sino que depende de la concentración inicial del reactivo o de los reactivos.

Ejercicio de práctica La reacción 2A \(\rightarrow \) B es de segundo orden y su constante de velocidad es \(51 / \text{M} \cdot \text{min} \) a 24°C. a) Iniciando con \([\text{A}]_0 = 0.0092 \text{ M}\), ¿cuánto tiempo tomará para que \([\text{A}]_t = 3.7 \times 10^{-7} \text{M}\)? b) Calcule la vida media de la reacción.

http://librosysolucionarios.net
Reacciones de orden cero

Las reacciones de primero y de segundo orden son los tipos de reacciones más conocidas. Las reacciones de orden cero son poco comunes. Para una reacción de orden cero

\[A \rightarrow \text{producto} \]

la ley de velocidad está dada por

\[\text{velocidad} = -k[A]_0 = k \]

Por lo tanto, la velocidad de una reacción de orden cero es una constante, independiente de la concentración de los reactivos. Mediante el cálculo, se puede demostrar que

\[[A]_t = -kt + [A]_0 \]

(13.9)

La ecuación (13.9) tiene la forma de una ecuación lineal. Como muestra la figura 13.14, una gráfica de \([A] \) contra \(t \) forma una recta con una pendiente \(= -k \) y una intersección de \(y = [A]_0 \). Para calcular la vida media de una reacción de orden cero, se establece \([A]_t = [A]_0/2 \) en la ecuación (13.9) y se obtiene

\[\eta = \frac{[A]_0}{2k} \]

(13.10)

Muchas de las reacciones de orden cero conocidas tienen lugar sobre una superficie metálica. Un ejemplo es la descomposición del óxido nitroso (N₂O) en nitrógeno y oxígeno en presencia del platino (Pt):

\[2\text{N}_2\text{O}(g) \rightarrow 2\text{N}_2(g) + \text{O}_2(g) \]

Cuando todos los sitios de unión en el Pt están ocupados, la velocidad se vuelve constante sin importar la cantidad de N₂O presente en la fase gaseosa. Como se verá en la sección 13.6, otra reacción de orden cero bien estudiada está representada por la catalítica enzimática.

Las reacciones de tercer orden y mayores son muy complejas y no se presentan en este libro. En la tabla 13.3 se resume la cinética de las reacciones de primer orden y de segundo orden. La sección de La química en acción de la página 568 describe la aplicación de la cinética química para calcular la antigüedad de los objetos.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Ley de velocidad</th>
<th>Ecuación de tiempo de concentración</th>
<th>Vida media</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Velocidad = (k)</td>
<td>([A]_t = -kt + [A]_0)</td>
<td>(\frac{[A]_0}{2k})</td>
</tr>
<tr>
<td>1</td>
<td>Velocidad = (k[A])</td>
<td>(\ln \frac{[A]_t}{[A]_0} = -kt)</td>
<td>(\frac{0.693}{k})</td>
</tr>
<tr>
<td>2</td>
<td>Velocidad = (k[A]^2)</td>
<td>(\frac{1}{[A]_t} = kt + \frac{1}{[A]_0})</td>
<td>(\frac{1}{k[A]_0})</td>
</tr>
</tbody>
</table>
Determinación de la edad del Sudario de Turín

¿De qué manera determinan los científicos las edades de los objetos descubiertos en las excavaciones arqueológicas? Si un día alguien le ofrece un manuscrito que supuestamente data del año 1000 a.C. ¿Cómo se podría tener la certeza de su autenticidad? ¿Una momia encontrada en una pirámide de Egipto de verdad tendrá 3,000 años de antigüedad? ¿El llamado Sudario de Turín es realmente el manto mortuorio de Jesucristo? Por lo general, las respuestas a ésta y a otras preguntas similares se pueden encontrar mediante la aplicación de la cinética química y la técnica de datación por carbono radiactivo.

La atmósfera terrestre está siendo constantemente bombardeada por rayos cósmicos de una energía con gran poder de penetración. Estos rayos, que se originan en el espacio exterior, están constituidos por electrones, neutrones y núcleos atómicos. Una de las reacciones importantes que se presentan entre la atmósfera y los rayos cósmicos es la captura de neutrones por el nitrógeno atómico (el isótopo nitrógeno-14) para producir el isótopo radiactivo carbono-14 e hidrógeno. Los átomos de carbono, que son inestables, finalmente forman $^{14}\text{CO}_2$, el cual se mezcla con el dióxido de carbono común ($^{12}\text{CO}_2$) que hay en el aire. Al desintegrarse el isótopo de carbono-14, emite partículas β (electrones). La velocidad de la desintegración (medida por el número de electrones emitidos por segundo) obedece a la cinética de primer orden. En el estudio de la desintegración radiactiva se acostumbra escribir la ley de velocidad como

$$v = kN$$

donde k es la constante de velocidad de primer orden y N es el número de átomos de ^{14}C presentes. La vida media de la desintegración, t_1, es 5.73×10^2 al año, de manera que la ecuación (13.6) se escribe

$$k = \frac{0.693}{5.73 \times 10^2 \text{año}^{-1}} = 1.21 \times 10^{-4} \text{año}^{-1}$$

El Sudario de Turín. Durante generaciones se ha suscitado una controversia acerca de si el sudario, una pieza de lino que presenta la imagen de un hombre, fue el manto mortuorio de Jesucristo. La edad del sudario ha sido determinada mediante la datación con carbono radiactivo.

13.4 Constantes de velocidad y su dependencia de la energía de activación y de la temperatura

Con muy pocas excepciones, la velocidad de las reacciones aumenta al incrementar la temperatura. Por ejemplo, el tiempo que se requiere para cocer un huevo en agua es mucho menor si la “reacción” se lleva a cabo a 100°C (unos 10 min) que a 80°C (cerca de 30 min). Por lo contrario, una forma efectiva de conservar alimentos consiste en almacenarlos a temperaturas bajo cero, para que disminuya la velocidad de descomposición bacteriana. En la figura 13.15 se ilustra un ejemplo típico de la relación entre la constante de velocidad de una reacción y la temperatura. Para explicar este comportamiento es necesario preguntarse cómo inician las reacciones.

La teoría de las colisiones en la cinética química

La teoría cinética molecular de los gases (página 197) establece que las moléculas de los gases chocan frecuentemente unas con otras. Por lo tanto, parece lógico suponer, y en general es
Los isótopos de carbono-14 entran en la biosfera donde las plantas toman el dióxido de carbono para la fotosíntesis. Los animales se alimentan con las plantas y exhalan carbono-14 como CO₂. Finalmente, el carbono-14 participa en muchos aspectos del ciclo del carbono. El ¹⁴C que se pierde por desintegración radiactiva se renueva constantemente en la materia viviente. Pero cuando una planta o un animal muere, el isótopo de carbono-14 en él ya no se renueva, de manera que la proporción disminuye por la desintegración del ¹⁴C. Este mismo cambio ocurre con los átomos de carbono atrapados en el carbón, en el petróleo o en la madera preservada en el subsuelo, y por supuesto, en las momias egipcias. Después de varios años, hay proporcionalmente menos núcleos de ¹⁴C en una momia que en una persona viva.

En 1955, Willard F. Libby sugirió que este hecho podría utilizarse para estimar el periodo en que el isótopo de carbono-14 de un especímen determinado ha seguido desintegrándose sin renverse. Si se ordena la ecuación (13.3), se puede escribir

\[\ln \frac{N_0}{N_t} = kt \]

donde \(N_0 \) y \(N_t \) son el número de núcleos de ¹⁴C presentes a \(t = 0 \) y \(t = t \), respectivamente. Debido a que la velocidad de desintegración es directamente proporcional al número de núcleos de ¹⁴C presentes, la ecuación anterior se puede escribir como

\[t = \frac{1}{k} \ln \frac{N_0}{N_t} = \frac{1}{1.21 \times 10^{-4} \text{ año}^{-1}} \ln \frac{N_0}{N_t} \]

velocidad de desintegración a \(t = 0 \)

velocidad de desintegración a \(t = t \)

velocidad de desintegración de una muestra reciente

velocidad de desintegración de una muestra antigua

Una vez que se sabe el valor de \(k \) y de las velocidades de desintegración para la muestra reciente y la muestra antigua, se puede calcular \(t \), que es la edad de la muestra antigua. Esta ingeniosa técnica está basada en una idea muy simple. Su éxito depende de la exactitud con que se pueda medir la velocidad de desintegración. En muestras recientes, la proporción ¹⁴C/¹²C es cercana a \(1/10^{12} \), de manera que el equipo utilizado para medir la desintegración radiactiva debe ser muy sensible. La precisión es más difícil con muestras más antiguas debido a que contienen menos núcleos de ¹⁴C. Sin embargo, la datación con carbono radiativo se ha convertido en una herramienta de gran valor para estimar la edad de piezas arqueológicas, pinturas y otros objetos que tienen una antigüedad de 1 000 a 50 000 años.

Una reciente aplicación importante de la datación con carbono radiactivo fue la determinación de la edad del Sudario de Turín. En 1988, tres laboratorios de Europa y Estados Unidos, que trabajaron en muestras de menos de 50 mg del Sudario, demostraron cada uno por su parte, mediante la datación con carbono-14, que el sudario correspondía al periodo entre los años 1260 d.C. y 1390 d.C. Por lo tanto, el Sudario no pudo haber sido la manta mortuoria de Jesucristo.
la concentración de las moléculas de B, la velocidad aumentaría al doble. Entonces, la ley de velocidad puede expresarse como

\[\text{velocidad} = k[A][B] \]

La reacción es de primer orden tanto en relación con A como en relación con B y obedece a una cinética de segundo orden.

La teoría de las colisiones es intuitiva, pero la relación entre la velocidad y las colisiones moleculares es más complicada de lo que podría esperarse. Según la teoría de las colisiones siempre hay una reacción cuando chocan las moléculas de A y B. Sin embargo, no todas las colisiones conducen a la reacción. Los cálculos basados en la teoría cinética molecular muestran que a presiones y temperaturas normales (1 atm y 298 K), ocurren alrededor de \(1 \times 10^{27}\) colisiones binarias (colisiones entre dos moléculas) en un volumen de 1 mL, cada segundo, en fase gaseosa. En los líquidos hay todavía más colisiones por segundo. Si cada colisión binaria condujera a un producto, la mayoría de las reacciones se completarían de manera casi instantánea. En la práctica, se encuentra que las velocidades de las reacciones varían mucho. Esto significa que, en muchos casos, las colisiones por sí mismas no garantizan que se lleve a cabo una reacción.

Cualquier molécula en movimiento posee energía cinética; cuanto más rápido se mueve, su energía cinética es mayor. Pero una molécula que se mueve rápidamente no se romperá en fragmentos por sí misma. Para reaccionar, debe chocar con otra molécula. Cuando las moléculas chocan, parte de su energía cinética se convierte en energía vibracional. Si la energía cinética inicial es grande, las moléculas que chocan vibrarán tan fuerte que se romperán algunos de los enlaces químicos. Esta fractura del enlace es el primer paso hacia la formación del producto. Si la energía cinética inicial es pequeña, las moléculas prácticamente rebotarán intactas. En términos energéticos, se dice que existe una energía mínima de choque, por debajo de la cual no habrá cambio alguno después del choque. Si no está presente esta energía, las moléculas permanecerán intactas y no habrá cambios por la colisión.

Se supone que para que ocurra una reacción, las moléculas que chocan deben tener energía cinética total igual o mayor que la energía de activación \(E_a\), que es la mínima cantidad de energía que se requiere para iniciar una reacción química. Cuando las moléculas chocan, forman un complejo activado (también denominado estado de transición) que es una especie formada temporalmente por las moléculas reactivas, como resultado de la colisión, antes de formar el producto.

En la figura 13.17 se muestran dos perfiles diferentes de energía potencial para la reacción

\[A + B \rightarrow AB^2 \rightarrow C + D \]

donde \(AB^2\) denota un complejo activado formado por la colisión entre A y B. Si los productos son más estables que los reactivos, entonces la reacción se verá acompañada por liberación de energía.
ción de calor, es decir, la reacción es exotérmica (figura 13.17a). Por otra parte, si los productos son menos estables que los reactivos, entonces la mezcla de reacción absorberá calor de los alrededores y se tendrá una reacción endotérmica (figura 13.17b). En ambos casos se construye una gráfica de energía potencial del sistema reaccionante contra el avance de la reacción. Cualitativamente, estas gráficas muestran los cambios de energía potencial a medida que los reactivos se van convirtiendo en productos.

Puede pensarse en la energía de activación como una barrera que evita que reaccionen las moléculas menos energéticas. Debido a que en una reacción común el número de moléculas reactivas es muy grande, la velocidad, y por lo tanto la energía cinética de las moléculas, varía mucho. En general, sólo una pequeña fracción de las moléculas que chocan, las que se mueven más rápido, tienen suficiente energía cinética para superar la energía de activación. Estas moléculas pueden participar, entonces, en la reacción. Ahora es explicable el aumento de velocidad (o de la constante de velocidad) con la temperatura: la velocidad de las moléculas obedece a la distribución de Maxwell que se muestra en la figura 5.17. Compare la distribución de las velocidades a dos temperaturas diferentes. Debido a que a mayor temperatura están presentes más moléculas con mayor energía, la velocidad de formación del producto también es mayor a más alta temperatura.

La ecuación de Arrhenius

La dependencia de la constante de velocidad de una reacción con respecto de la temperatura se expresa mediante la siguiente ecuación, conocida como la ecuación de Arrhenius:

\[\begin{align*}
 k &= A e^{-E_a/RT} \\
 \ln k &= \ln A - \frac{E_a}{RT}
\end{align*} \tag{13.11}

donde \(E_a \) es la energía de activación de la reacción (en \(\text{kJ/mol} \)), \(R \) es la constante de los gase (8.314 \(\text{J/K \cdot mol} \)), \(T \) es la temperatura absoluta y \(e \) es la base de la escala de logaritmos naturales (ver el apéndice 4). La cantidad \(A \) representa la frecuencia de las colisiones y se llama factor de frecuencia. Se puede tratar como una constante para un sistema de reacción determinado en un amplio intervalo de temperatura. La ecuación (13.11) muestra que la constante de velocidad es directamente proporcional a \(A \), y por lo tanto a la frecuencia de las colisiones. Además, por el signo negativo asociado al exponente \(E_a/RT \), la constante de velocidad disminuye cuando aumenta la energía de activación y aumenta con el incremento de la temperatura. Esta ecuación se expresa de una forma más útil aplicando el logaritmo natural en ambos lados:

\[\begin{align*}
 \ln k &= \ln A e^{-E_a/RT} \\
 \ln k &= \ln A - \frac{E_a}{RT}
\end{align*} \tag{13.12}

La ecuación (13.12) se ordena como la ecuación de una recta:

\[\ln k = \left(-\frac{E_a}{R} \right) \left(\frac{1}{T} \right) + \ln A \tag{13.13} \]

Entonces, una gráfica de \(\ln k \) contra \(1/T \) forma una línea recta, cuya pendiente \(m \) es igual a \(-E_a/R \) y cuya intersección \(b \) con la ordenada (el eje y) es \(\ln A \).

En el ejemplo 13.8 se demuestra un método gráfico para determinar la energía de activación de una reacción.

http://librosysolucionarios.net
Ejemplo 13.8
Las constantes de velocidad para la descomposición del acetaldehído

\[
\text{CH}_3\text{CHO}(g) \rightarrow \text{CH}_4(g) + \text{CO}(g)
\]
se midieron a cinco temperaturas diferentes. Los datos se presentan en la tabla. Trace una gráfica de \(\ln k\) contra \(1/T\) y determine la energía de activación (en kJ/mol) para la reacción. Observe que la reacción es de orden \(\frac{1}{2}\) en relación con \(\text{CH}_3\text{CHO}\), por lo que \(k\) tiene como unidades \(1/M^2 \cdot s\).

<table>
<thead>
<tr>
<th>(k, (1/M^2 \cdot s))</th>
<th>(T, (K))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.011</td>
<td>700</td>
</tr>
<tr>
<td>0.035</td>
<td>730</td>
</tr>
<tr>
<td>0.105</td>
<td>760</td>
</tr>
<tr>
<td>0.343</td>
<td>790</td>
</tr>
<tr>
<td>0.789</td>
<td>810</td>
</tr>
</tbody>
</table>

Estrategia Considere la ecuación de Arrhenius escrita como una ecuación lineal

\[
\ln k = \left(\frac{E_A}{R}\right)\left(\frac{1}{T}\right) + \ln A
\]

La gráfica de \(\ln k\) contra \(1/T\) (y contra \(x\)) forma una línea recta con una pendiente igual a \(-E_A/R\). Por lo tanto, la energía de activación se puede determinar a partir de la pendiente de la gráfica.

Solución Primero se convierten los datos en la siguiente tabla:

<table>
<thead>
<tr>
<th>(\ln k)</th>
<th>(1/T, (K^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.51</td>
<td>1.43 \times 10^{-3}</td>
</tr>
<tr>
<td>-3.35</td>
<td>1.37 \times 10^{-3}</td>
</tr>
<tr>
<td>-2.254</td>
<td>1.32 \times 10^{-3}</td>
</tr>
<tr>
<td>-1.070</td>
<td>1.27 \times 10^{-3}</td>
</tr>
<tr>
<td>-0.237</td>
<td>1.23 \times 10^{-3}</td>
</tr>
</tbody>
</table>

La gráfica de estos datos se muestra en la figura 13.18. La pendiente de la recta se calcula a partir de dos pares de coordenadas:

\[
\text{pendiente} = \frac{-(4.00) - (-0.45)}{(1.41 - 1.24) \times 10^{-3} \, K^{-1}} = -2.09 \times 10^4 \, K
\]

Figura 13.18 Diagrama de \(\ln k\) contra \(1/T\). La pendiente de la recta es igual a \(-E_A/R\).
A partir de la forma lineal de la ecuación (13.13) se tiene

\[\text{pendiente } = \frac{E_a}{R} = -2.09 \times 10^4 \text{ K} \]
\[E_a = 8.314 \text{ J/K·mol}/(2.09 \times 10^4 \text{ K}) \]
\[= 1.74 \times 10^2 \text{ J/mol} \]
\[= 1.74 \times 10^5 \text{ kJ/mol} \]

Verificación Es importante observar que, a pesar de que la constante de velocidad tiene las unidades \(1/M\cdot s\), la cantidad \(\ln k\) no tiene unidades (no es posible sacar el logaritmo de una unidad).

Ejercicio de práctica La constante de velocidad de segundo orden de la descomposición del oxido nitroso (N\(_2\)O) en una molécula de nitrógeno y un átomo de oxígeno se ha medido a diferentes temperaturas:

\[
\begin{array}{cc}
 k \text{ (1/M·s)} & t \text{ (°C)} \\
 1.87 \times 10^{-3} & 600 \\
 0.0113 & 650 \\
 0.0569 & 700 \\
 0.244 & 750 \\
\end{array}
\]

Determine gráficamente la energía de activación para la reacción.

Una ecuación que relaciona las constantes de velocidad \(k_1\) y \(k_2\) a las temperaturas \(T_1\) y \(T_2\) puede utilizarse para calcular la energía de activación o para encontrar la constante de velocidad a otra temperatura, si se conoce la energía de activación. Para obtener dicha ecuación se empieza con la ecuación (13.12):

\[
\ln k_1 = \ln A - \frac{E_a}{RT_1} \\
\ln k_2 = \ln A - \frac{E_a}{RT_2}
\]

Al restar \(\ln k_2\) de \(\ln k_1\), se tiene

\[
\ln k_1 - \ln k_2 = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) \\
\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)
\]

\[
\ln \frac{k_1}{k_2} = \frac{E_a}{R} \left(\frac{T_1 - T_2}{T_1 T_2} \right) \tag{13.14}
\]

En el ejemplo 13.9 se muestra el uso de la ecuación que se acaba de obtener.

Ejemplo 13.9

La constante de velocidad de una reacción de primer orden es \(3.46 \times 10^{-2} \text{ s}^{-1}\) a 298 K. ¿Cuál es la constante de velocidad a 350 K si la energía de activación para la reacción es 50.2 kJ/mol?

Estrategia Una forma modificada de la ecuación de Arrhenius relaciona dos constantes a dos temperaturas diferentes [vea la ecuación (13.14)]. Asegúrese de que las unidades \(R\) y \(E_a\) son congruentes.

Solución Los datos son

\[
k_1 = 3.46 \times 10^{-2} \text{ s}^{-1} \quad k_2 = ? \]
\[
T_1 = 298 \text{ K} \quad T_2 = 350 \text{ K}
\]

(continúa)
Al sustituir en la ecuación (13.14)

$$\ln \frac{3.46 \times 10^{-2} \text{s}^{-1}}{k_2} = \frac{50.2 \times 10^3 \text{J/mol}}{8.314 \text{J/K/mol} \cdot \text{mol}} \left[\frac{298 \text{K} - 350 \text{K}}{(298 \text{K})(350 \text{K})} \right]$$

Se convierte E_a en unidades de J/mol que coincidan con las unidades de R. Al resolver la ecuación, se tiene

$$\ln \frac{3.46 \times 10^{-2} \text{s}^{-1}}{k_2} = -3.01$$

$$\frac{3.46 \times 10^{-2} \text{s}^{-1}}{k_2} = e^{-3.01} = 0.0493$$

$$k_2 = 0.702 \text{s}^{-1}$$

Verificación Se espera que la constante de velocidad sea más grande a mayor temperatura. Por lo tanto, la respuesta resulta razonable.

Ejercicio de práctica La constante de velocidad de primer orden para la reacción del cloro de metilo (CH$_3$Cl) con agua para producir metanol (CH$_3$OH) y ácido clorhídrico (HCl) es $3.32 \times 10^{-10} \text{s}^{-1}$ a 25°C. Calcule la constante de velocidad a 40°C si la energía de activación es 116 kJ/mol.

Para las reacciones sencillas (por ejemplo, reacciones entre átomos), se iguala el factor de frecuencia (A) en la ecuación de Arrhenius, con la frecuencia de las colisiones entre las especies reactivas. Para reacciones más complejas también se debe considerar el "factor de orientación", es decir, cómo se orientan unas con otras las moléculas reactivas. La reacción entre átomos de potasio (K) y yoduro de metilo (CH$_3$I) para formar yoduro de potasio (KI) y radicales metilo (CH$_3$) ejemplifica este punto:

$$K + CH_3I \rightarrow KI + CH_3$$

Esta reacción resulta favorecida cuando los átomos de K chocan con el átomo de I del CH$_3$I (figura 13.19). De otra manera no se forman productos o se obtienen en muy poca cantidad.

Figura 13.19 Orientación relativa de las moléculas reaccionantes. La reacción se efectúa sólo cuando el átomo de K choca directamente contra el átomo de I.
La naturaleza del factor de orientación se analiza con detalle en estudios más avanzados de cinética química.

13.5 Mecanismos de reacción

Como se mencionó con anterioridad, una ecuación química global balanceada no indica mucho con respecto de cómo se lleva a cabo la reacción. En muchos casos, sólo representa la suma de varios pasos elementales, o reacciones elementales, una serie de reacciones sencillas que representan el avance de la reacción global a nivel molecular. El término que se utiliza para la secuencia de pasos elementales que conducen a la formación del producto es el mecanismo de reacción. El mecanismo de reacción es comparable con la ruta, o el camino, que se sigue durante un viaje; la ecuación química global sólo especifica el origen y el destino.

Como ejemplo de un mecanismo de reacción, considere la reacción entre óxido nítrico y oxígeno:

$$2\text{NO}(g) + \text{O}_2(g) \rightarrow 2\text{NO}_2(g)$$

Se sabe que los productos no se forman directamente como resultado de la colisión de dos moléculas de NO con una molécula de O₂, porque se ha detectado la presencia de N₂O₃ durante el curso de la reacción. Suponga que la reacción en realidad se lleva a cabo en dos pasos elementales, como sigue:

$$2\text{NO}(g) \rightarrow \text{N}_2\text{O}_2(g)$$

$$\text{N}_2\text{O}_2(g) + \text{O}_2(g) \rightarrow 2\text{NO}_2(g)$$

En la primera etapa elemental, dos moléculas de NO chocan para formar una molécula de N₂O₂. Después sigue la reacción entre N₂O₂ y O₂ para formar dos moléculas de NO₂. La ecuación química global, que representa el cambio total, está dada por la suma de los pasos elementales:

<table>
<thead>
<tr>
<th>Paso 1:</th>
<th>NO + NO \rightarrow N₂O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 2:</td>
<td>N₂O₂ + O₂ \rightarrow 2NO₂</td>
</tr>
<tr>
<td>Reacción global:</td>
<td>2NO + N₂O₂ + O₂ \rightarrow N₂O₅ + 2NO₂</td>
</tr>
</tbody>
</table>

Las especies como N₂O₂ se llaman intermediarios porque aparecen en el mecanismo de la reacción (es decir, en los pasos elementales) pero no en la ecuación global balanceada. Recuerde que un intermediario siempre se forma en un paso elemental inicial y se consume en uno posterior.

La molecularidad de una reacción es el número de moléculas que reaccionan en un paso elemental. Estas moléculas pueden ser las mismas o diferentes. Cada uno de los pasos elementales estudios es una reacción bimolecular, un paso elemental que implica dos moléculas. Un ejemplo de una reacción unimolecular, un paso elemental en el que sólo participa una molécula reaccionante, es la conversión de ciclopropano en propeno, estudiada en el ejemplo 13.4. Se conocen muy pocas reacciones trimoleculares, reacciones donde participan tres moléculas en un paso elemental, debido a que el encuentro simultáneo de tres moléculas es mucho menos probable que una colisión bimolecular.
Las leyes de velocidad y los pasos elementales

El conocimiento de los pasos elementales de una reacción permite deducir la ley de velocidad. Supongamos que se tiene la siguiente reacción elemental:

\[A \rightarrow \text{productos} \]

Debido a que sólo hay una molécula presente, se trata de una reacción unimolecular. Cuanto mayor sea el número de moléculas de A presentes, mayor será la velocidad de formación del producto. Entonces, la velocidad de una reacción unimolecular es directamente proporcional a la concentración de A, es decir, es de primer orden respecto de A:

\[\text{velocidad} = k[A] \]

Para una reacción elemental bimolecular, que incluye moléculas de A y B

\[A + B \rightarrow \text{producto} \]

la velocidad de formación del producto depende de la frecuencia con que choquen A y B, lo que a su vez depende de las concentraciones de A y B. Entonces, la velocidad se expresa como

\[\text{velocidad} = k[A][B] \]

De igual manera, para una reacción elemental bimolecular del tipo

\[A + A \rightarrow \text{productos} \]

o

\[\text{2A} \rightarrow \text{productos} \]

la velocidad se convierte en

\[\text{velocidad} = k[A]^2 \]

Los ejemplos anteriores muestran que en una reacción elemental el orden de reacción respecto de cada reactivo es igual a su coeficiente estequiométrico en la ecuación química de ese paso. En general, no es posible decir a simple vista, a partir de una ecuación balanceada, si la reacción ocurre tal como se muestra o en una serie de etapas. Esto se determina en el laboratorio.

Cuando se estudia una reacción que tiene más de un paso elemental, la ley de velocidad para el proceso global está dada por el paso determinante de la velocidad, que es el paso más lento de la secuencia de pasos que conducen a la formación del producto.

Una analogía para el paso determinante de la velocidad sería el flujo del tránsito en una carretera estrecha. Suponiendo que los automóviles no pueden rebasarse en dicha carretera, la velocidad a la cual viaja un automóvil dependerá del que se mueva más lento.

Los estudios experimentales de los mecanismos de reacción inician con la recolección de datos (mediciones de velocidad). A continuación se analizan los datos para la determinación de la constante de velocidad y del orden de una reacción, y también se expresa la ley de la velocidad. Por último, se sugiere un posible mecanismo para la reacción, en términos de pasos elementales (figura 13.20). Los pasos elementales deben satisfacer dos requisitos:

Figura 13.20 Secuencia de pasos en el estudio de un mecanismo de reacción.

[Diagrama mostrando la secuencia de pasos: Medición de la velocidad de una reacción, Formulación de la ley de la velocidad, Postulación de un mecanismo de reacción razonable]
13.5 Mecanismos de reacción

- La suma de los pasos elementales debe dar la ecuación global balanceada para la reacción.
- El paso determinante de la velocidad debe predecir la misma ley de velocidad que la que se determina de manera experimental.

Recuerde que para proponer el esquema de una reacción debe detectarse la presencia de algunos o algunos intermediarios formados en uno o más de los pasos elementales.

La descomposición del peróxido de hidrógeno y la formación de yoduro de hidrógeno a partir de hidrógeno molecular y de yodo molecular muestran la forma de determinar un mecanismo de reacción, a partir de estudios experimentales.

Descomposición del peróxido de hidrógeno

La descomposición del peróxido de hidrógeno se facilita por la presencia de iones yoduro (figura 13.21). La reacción global es

$$2\text{H}_2\text{O}_2(\text{ac}) \rightarrow 2\text{H}_2\text{O}(l) + \text{O}_2(g)$$

Experimentalmente se encontro que la ley de velocidad es

$$v = k[\text{H}_2\text{O}_2][\Gamma^-]$$

Por lo que la reacción es de primer orden tanto en relación con H_2O_2 como con Γ^-. Como se ve, la descomposición de H_2O_2 no procede en un solo paso elemental que corresponda a la ecuación global balanceada. Si así fuera, la reacción sería de segundo orden respecto de H_2O_2 (como resultado de la colisión de dos moléculas de H_2O_2). Además, el ion I^-, que no aparece en la ecuación global, aparece en la expresión de la ley de velocidad. ¿Cómo se explican estos hechos? Primero, se puede explicar la ley de velocidad observada suponiendo que la reacción se lleva a cabo en dos pasos elementales independientes, cada uno de los cuales es bimolecular:

Paso 1: \[\text{H}_2\text{O}_2 + \Gamma^- \rightarrow k_1 \rightarrow \text{H}_2\text{O} + \text{IO}^- \]

Paso 2: \[\text{H}_2\text{O} + \text{IO}^- \rightarrow k_2 \rightarrow \text{H}_2\text{O} + \text{O}_2 + \Gamma^- \]

Si, además, se supone que el paso 1 es el paso determinante de la velocidad, entonces la velocidad de la reacción se determina a partir del primer paso solo:

$$v = k_1[\text{H}_2\text{O}_2][\Gamma^-]$$

donde $k_1 = k$. Observe que el ion IO^- es un intermediario, ya que no aparece en la ecuación global balanceada. A pesar de que el ion Γ^- tampoco aparece en la ecuación global, el Γ^- difiere del IO^- en que el primero está presente tanto al inicio de la reacción como cuando se ha completado. La función del Γ^- es aumentar la velocidad de la reacción, es decir, es un catalizador. En la figura 13.22 de la sección 13.6 se muestra el perfil de energía potencial para una reacción parecida a la descomposición del H_2O_2. Se puede observar que el primer paso, el cual es determinante de la velocidad, tiene una energía de activación mayor que el segundo paso. El intermediario, aunque es lo suficientemente estable para poderse observar, reacciona con rapidez para formar los productos.

La reacción del yoduro de hidrógeno

Un mecanismo de reacción común es aquel que incluye por lo menos dos pasos elementales, el primero de los cuales es muy rápido, tanto en la dirección directa como en la inversa, comparado con el segundo paso. Un ejemplo lo constituye la reacción entre hidrógeno molecular y yodo molecular, para producir yoduro de hidrógeno:

$$\text{H}_2(g) + \text{I}_2(g) \rightarrow 2\text{HI}(g)$$

Figura 13.21 La descomposición del peróxido de hidrógeno está catalizada por el yoduro. Se agregaron algunas gotas de un jabón líquido a la disolución para evitar el desprendimiento de oxígeno gaseoso. (Algunos de los iones yoduro se oxidan para formar yodo molecular, el cual a su vez reacciona con los iones yodo para formar el yoduro, I_3^- de color café.)

Figura 13.22 Perfil de energía potencial para una reacción de dos pasos en la cual el primer paso es determinante de la velocidad. R y P representan reactivos y productos, respectivamente.
Experimentalmente se encontró que la ley de velocidad es

\[
\text{velocidad} = k[H_2][I_2]
\]

Durante muchos años se pensó que la reacción ocurra tal como está escrita; es decir, que era una reacción bimolecular que requería una molécula de hidrógeno y una molécula de yodo, como se mostró en la página 577. Sin embargo, los químicos del decenio de 1960 encontraron que el mecanismo real es más complicado. Se propuso un mecanismo de dos pasos:

\[
\begin{align*}
\text{Paso 1:} & \quad I_2 \xrightleftharpoons[k_{-1}]{k_1} 2I \\
\text{Paso 2:} & \quad H_2 + 2I \xrightarrow{k_2} 2HI
\end{align*}
\]

donde \(k_1\), \(k_{-1}\) y \(k_2\) son las constantes de velocidad para las reacciones. Los átomos de I son los intermediarios en esta reacción.

Cuando inicia la reacción, hay muy pocos átomos de I presentes. Pero a medida que se disocia el \(I_2\), disminuye su concentración, en tanto que la de I aumenta. Por lo tanto, en el paso 1, la velocidad directa disminuye, en tanto que la velocidad inversa aumenta. Muy pronto se igualan las dos velocidades y se establece un equilibrio químico. Debido a que las reacciones elementales del paso 1 son mucho más rápidas que las del paso 2, se alcanza el equilibrio antes de que ocurra una reacción significativa con el hidrógeno y por lo tanto éste persiste a través de la reacción.

En las condiciones de equilibrio del paso 1, la velocidad directa es igual a la velocidad inversa, es decir,

\[
\frac{k_1[I_2]}{[I]^2} = \frac{k_{-1}}{k_2}[I_2]
\]

La velocidad de la reacción está dada por el paso lento, el paso determinante de la velocidad, que es el paso 2:

\[
\text{velocidad} = k_2[H_2][I]^2
\]

Al sustituir la expresión para \([I]^2\) en esta ley de velocidad, se obtiene

\[
\text{velocidad} = \frac{k_1k_2}{k_{-1}} [H_2][I_2]
\]

\[
= k[H_2][I_2]
\]

donde \(k = \frac{k_1k_2}{k_{-1}}\). Como se observa, este mecanismo en dos pasos también proporciona la ley de velocidad correcta para la reacción. Esta concordancia, además de la presencia de los átomos de I como intermediarios, constituye una fuerte evidencia para avalar este mecanismo como correcto.

Por último, se observa que no todas las reacciones tienen un solo paso determinante de la velocidad. Una reacción puede tener dos o más pasos igualmente lentos. En general, el análisis de la cinética de dichas reacciones es más complicado.

El ejemplo 13.10 se refiere al estudio del mecanismo de una reacción relativamente sencilla.

Ejemplo 13.10

Se cree que la descomposición del óxido nitroso (\(N_2O\)) en fase gaseosa se realiza a través de dos pasos elementales:

\[
\begin{align*}
\text{Paso 1:} & \quad N_2O \xrightarrow{k_1} N_2 + O \\
\text{Paso 2:} & \quad N_2O + O \xrightarrow{k_2} N_2 + O_2
\end{align*}
\]

(continúa)
13.5 Mecanismos de reacción

Experimentalmente se encontró que la ley de velocidad es velocidad = \(k[N_2O] \).

a) Escriba una ecuación para la reacción global.

b) Identifique los intermediarios.

c) ¿Qué puede decirse acerca de las velocidades relativas de los pasos 1 y 2?

Estrategia

a) Debido a que la reacción global puede descomponerse en pasos elementales, una vez que se conocen estos pasos elementales se puede escribir la reacción global.

b) ¿Cuáles son las características de un intermediario? Aparece en la reacción global?

c) ¿Qué determina cuál paso elemental es determinante de la velocidad? De qué manera sería útil el conocimiento del paso determinante de la velocidad para escribir la ley de velocidad de una reacción?

Solución

a) Al sumar las ecuaciones de los pasos 1 y 2 se obtiene la reacción global

\[
2N_2O \rightarrow 2N_2 + O_2
\]

b) Debido a que en el primer paso elemental se forma el átomo de O y no aparece en la ecuación global balanceada, es un intermediario.

c) Si se supone que el paso 1 es el paso determinante de la velocidad (es decir, si \(k_1 \gg k_2 \)), entonces la velocidad de la reacción global está dada por

\[
\text{velocidad} = k_1[N_2O]
\]

Verificación

El paso 1 debe ser el paso determinante de la velocidad debido a que la ley de velocidad escrita a partir de este paso coincide con la ley de velocidad experimentalmente determinada, es decir, velocidad = \(k[N_2O] \).

Ejercicio de práctica

Se cree que la reacción entre NO₂ y CO para producir NO y CO₂ procede a través de dos pasos:

Paso 1: \(NO_2 + NO_2 \rightarrow NO + NO_3 \)
Paso 2: \(NO_3 + CO \rightarrow NO_2 + CO_2 \)

La ley de velocidad experimental es velocidad = \(k[NO_2]^2 \). a) Escriba la ecuación para la reacción global.

b) Identifique el intermediario.

c) ¿Qué puede decirse en cuanto a las velocidades relativas de los pasos 1 y 2?

Confirmación experimental de los mecanismos de reacción

¿Cómo se puede comprobar si es correcto el mecanismo que se propone para una reacción en particular? En el caso de la descomposición del peróxido de hidrógeno se podría tratar de detectar la presencia de los iones IO^{-1} por métodos espectroscópicos. La evidencia de su presencia confirmaría el esquema de la reacción. De manera similar, para la reacción del yoduro de hidrógeno, la detección de átomos de yodo confirmaría el mecanismo en dos pasos. Por ejemplo, el I₂ se disocia en átomos cuando se irradia con luz visible. Por lo tanto, se puede predecir que la formación de HI a partir de H₂ y de I₂ aumenta a medida que se eleva la intensidad de la luz, ya que así se incrementa la concentración de átomos de I. En efecto, esto es lo que se observa.

En otro caso, los químicos quisieron saber cuál enlace C-O se rompe durante la reacción entre el acetato de metilo y el agua, con el fin de entender mejor el mecanismo de la reacción.

\[
\begin{align*}
\text{CH₃-C-O-CH₃} + \text{H₂O} & \rightarrow \text{CH₃-C-OH} + \text{CH₃OH} \\
& \text{acetato de metilo} \quad \text{ácido acético}
\end{align*}
\]
Femtoquímica

La capacidad de seguir reacciones químicas en su nivel molecular ha sido una de las metas más perseguidas en química. Lograr esta meta significa que los químicos serán capaces de entender cuándo ocurre una reacción determinada, así como la dependencia de su velocidad con la temperatura y otros parámetros. Desde el punto de vista práctico, esta información ayudará a los químicos a controlar la velocidad de las reacciones y a incrementar los rendimientos. Una comprensión completa del mecanismo de reacción requiere un conocimiento detallado del complejo activado (también conocido como estado de transición). No obstante, el estado de transición es una especie con mucha energía que no se puede aislar debido a su tiempo de vida extremadamente corto.

La situación cambió en el decenio de 1980 cuando los químicos en el California Institute of Technology comenzaron a utilizar pulsos láser muy cortos para probar reacciones químicas. Debido a que los estados de transición sólo duran de 10 a 1 000 femtosegundos, los pulsos de láser necesarios para realizar pruebas debían ser extraordinariamente cortos. (1 femtosegundo, o 1 fs, es \(1 \times 10^{-15}\) s. Para apreciar qué tan corta es esta duración, observe que hay tantos femtosegundos en un segundo como segundos en cerca de 32 millones de años!) Una de las reacciones estudiadas fue la descomposición del ciclobutano (C\(_4\)H\(_8\)) en etileno (C\(_2\)H\(_4\)). Hay dos mecanismos posibles. El primero es un proceso en un solo paso en el cual dos enlaces carbono-carbono se rompen de manera simultánea para formar el producto.

\[
\begin{align*}
\text{CH}_2\text{CH}_2 + \text{CH}_2\text{CH}_2 & \rightarrow 2\text{CH}_2=\text{CH}_2 \\
\text{CH}_2\text{CH}_2 + \text{CH}_2\text{CH}_2 & \rightarrow 2\text{CH}_2=\text{CH}_2
\end{align*}
\]

El segundo mecanismo tiene dos pasos, con un intermediario.

\[
\begin{align*}
\text{CH}_2\text{CH}_2 & \rightarrow \text{CH}_2 \cdot \text{CH}_2 \\
\text{CH}_2\text{CH}_2 & \rightarrow \text{CH}_2 \cdot \text{CH}_2 \rightarrow 2\text{CH}_2=\text{CH}_2
\end{align*}
\]

donde el punto representa un electrón desaparecido.

Los químicos del Cal Tech iniciaron la reacción con un bombeo de pulsos láser, que excitaba el reactivo. El primer pulso de prueba golpea las moléculas unos pocos femtosegundos más tarde y es seguido por muchos miles más, aproximadamente cada 10 fs, durante la reacción. Cada pulso de prueba produce un espectro de absorción y los cambios en el espectro revelan el movimiento de la molécula y el estado de los enlaces químicos. De esta forma, los químicos estaban equipados de manera eficiente con una cámara que tenía un obturador con diferentes velocidades para capturar el progreso de la reacción. Los resultados muestran que el segundo mecanismo es el que se lleva a cabo. El tiempo de vida del intermediario es alrededor de 700 fs.

La técnica láser del femtosegundo se ha aplicado para dilucidar los mecanismos de muchas reacciones químicas y de procesos biológicos como la fotosíntesis y la visión. Ha creado una nueva área en la cinética química conocida como femtoquímica.
Las dos posibilidades son

\[
\begin{align*}
\text{CH}_3\text{C} & \text{O} \text{CH}_3 \\
& \text{CH}_3\text{C} & \text{O} \text{CH}_3 \\
\text{a)} & \quad \text{b)}
\end{align*}
\]

Para distinguir entre los esquemas a) y b), los químicos utilizaron agua que contenía el isótopo oxígeno-18, en vez del agua común (que contiene el isótopo oxígeno-16). Cuando se utilizó agua con oxígeno-18, sólo el ácido acético formado contenía oxígeno-18:

\[
\text{CH}_3\text{C}\text{O}^\text{18O} \text{H}
\]

Por lo tanto, la reacción debe haber ocurrido a través del esquema de ruptura de a), ya que el producto formado mediante el esquema b) tendría los dos átomos de oxígeno originales.

Otro ejemplo lo constituye la fotosíntesis, el proceso mediante el cual las plantas verdes producen glucosa a partir de dióxido de carbono y agua

\[
6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_12\text{O}_6 + 6\text{O}_2
\]

Una pregunta que surgió en los estudios iniciales de la fotosíntesis fue si el oxígeno molecular provenía del agua, del dióxido de carbono, o de ambos. Al utilizar agua que contenía el isótopo oxígeno-18 se demostró que el oxígeno liberado provenía del agua y no del dióxido de carbono, ya que el O\text{2} contenía sólo isótopos \text{18O}. Este resultado confirmó el mecanismo de que las moléculas de agua “se rompen” por acción de la luz:

\[
2\text{H}_2\text{O} + h\nu \rightarrow \text{O}_2 + 4\text{H}^+ + 4\text{e}^-
\]

donde \(h\nu \) representa la energía de un fotón. Los fotones y los electrones se utilizan para que se llven a cabo reacciones que son desfavorables energéticamente, pero que son necesarias para el crecimiento y las funciones de las plantas.

Estos ejemplos proporcionan cierta idea de cómo los químicos deben tener inventiva para estudiar los mecanismos de reacción. Sin embargo, para reacciones complejas es casi imposible probar el hecho de que un mecanismo en particular sea el único.

13.6 Catálisis

Como se observó antes, en la descomposición del peróxido de hidrógeno la velocidad de reacción depende de la concentración de iones yoduro \(\Gamma^- \) a pesar de que no aparecen en la ecuación global. Se mencionó que \(\Gamma^- \) actúa como catalizador para la reacción. Un catalizador es una sustancia que aumenta la velocidad de una reacción química sin consumirse. El catalizador puede reaccionar para formar un intermediario, pero se regenera en un paso subsiguiente de la reacción.

En la preparación de oxígeno molecular en el laboratorio, se calienta una muestra de clorato de potasio, como se muestra en la figura 4.12b). La reacción es

\[
2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)
\]

Sin embargo, este proceso de descomposición térmica es muy lento en ausencia de un catalizador. La velocidad de descomposición puede aumentarse de forma evidente agregando una pequeña cantidad del catalizador dióxido de manganeso(IV) \((\text{MnO}_2)\), un polvo de color negro. Al final de la reacción es posible recuperar todo el \text{MnO}_2, de la misma manera que todos los iones \(\Gamma^- \) permanecen después de la descomposición del \text{H}_2\text{O}_2.
Un catalizador acelera una reacción al proporcionar una serie de pasos elementales con cinéticas más favorables que las que existen en su ausencia. A partir de la ecuación (13.11) se sabe que la constante de velocidad \(k \) (y por lo tanto la velocidad) de una reacción depende del factor de frecuencia \(A \) y de la energía de activación \(E_a \): cuanto mayor sea \(A \), o menor \(E_a \), mayor será la velocidad. En muchos casos, un catalizador aumenta la velocidad disminuyendo la energía de activación de una reacción.

Suponga que la siguiente reacción tiene cierta constante de velocidad \(k \) y una energía de activación \(E_a \):

\[
A + B \xrightarrow{k} C + D
\]

Sin embargo, en presencia de un catalizador, la constante de velocidad es \(k_c \) (denominada constante de velocidad catalítica):

\[
A + B \xrightarrow{k_c} C + D
\]

Por la definición de un catalizador,

\[
\text{velocidad con catalizador} \quad > \quad \text{velocidad sin catalizador}
\]

En la figura 13.23 se observan los perfiles de energía potencial para ambas reacciones. Observe que las energías totales de los reactivos (A y B) y de los productos (C y D) no se alteran por el catalizador; la única diferencia entre las dos es una disminución de la energía de activación de \(E_a \) a \(E_a' \). Debido a que la energía de activación de la reacción inversa también disminuye, un catalizador aumenta la velocidad de la reacción inversa exactamente igual que lo hace con la directa.

Existen tres tipos generales de catálisis, dependiendo de la naturaleza de la sustancia que aumenta la velocidad: catálisis heterogénea, catálisis homogénea y catálisis enzimática.

Catálisis heterogénea

En la catálisis heterogénea, los reactivos y el catalizador están en fases distintas. Por lo general, el catalizador es un sólido y los reactivos son gases o líquidos. La catálisis heterogénea es, con mucho, el tipo más importante de catálisis en la industria química, especial...
mente en la síntesis de muchos compuestos químicos. Aquí se describirán tres ejemplos específicos de catalisis heterogénea que intervienen en la producción anual de millones de toneladas de productos químicos en escala industrial.

La síntesis de Haber para el amoniaco

El amoniaco es una sustancia inorgánica de gran valor que se utiliza en la industria de los fertilizantes, en la manufactura de explosivos y en muchas otras áreas. A finales del siglo antepasado, muchos químicos se esforzaron por sintetizar amoniaco a partir de nitrógeno e hidrógeno. La fuente de nitrógeno atmosférico es prácticamente inagotable y el hidrógeno gaseoso se produce fácilmente pasando vapor sobre carbón calentado:

\[
\text{H}_2\text{O}(g) + \text{C}(s) \rightarrow \text{CO}(g) + \text{H}_2(g)
\]

El hidrógeno también puede obtenerse como subproducto de la refinación del petróleo.

La formación de NH\textsubscript{3} a partir de N\textsubscript{2} y de H\textsubscript{2} es exotérmica:

\[
\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g) \quad \Delta H^\circ = -92.6 \text{ kJ/mol}
\]

Pero la velocidad de la reacción es extremadamente lenta a temperatura ambiente. Para que una reacción sea una operación práctica a gran escala, debe proceder a una velocidad apreciable y debe dar un alto rendimiento del producto deseado. Al aumentar la temperatura se acelera la reacción anterior, pero al mismo tiempo se promueve la descomposición de moléculas de NH\textsubscript{3} en N\textsubscript{2} y H\textsubscript{2}, lo que reduce el rendimiento de NH\textsubscript{3}.

En 1905, después de probar literalmente con cientos de compuestos a varias temperaturas y presiones, Fritz Haber descubrió que el hierro, más un pequeño porcentaje de óxidos de potasio y de aluminio, cataliza la reacción del hidrógeno con el nitrógeno para producir amoniaco, aproximadamente a 500°C. Este procedimiento se conoce como el proceso Haber.

En la catalysis heterogénea, la superficie del catalizador sólido por lo general es el sitio donde se lleva a cabo la reacción. El paso inicial en el proceso Haber implica la disociación del N\textsubscript{2} y del H\textsubscript{2} en la superficie del metal (figura 13.24). Aunque las especies disociadas no son en realidad átomos libres porque están unidas a la superficie del metal, son muy reactivas. Las dos moléculas de reactivos se comportan de manera muy diferente en la superficie del catalizador. Los estudios han demostrado que el H\textsubscript{2} se disocia en hidrógeno atómico a temperaturas tan bajas como −196°C (el punto de ebullición del nitrógeno líquido). Por otra parte, las moléculas de nitrógeno se disocian aproximadamente a 500°C. Los átomos de N y de H, que son muy reactivos, se combinan rápidamente a altas temperaturas, para producir las moléculas deseadas de NH\textsubscript{3}.

\[
\text{N} + 3\text{H} \rightarrow \text{NH}_3
\]
La fabricación del ácido nítrico
El ácido nítrico es uno de los ácidos inorgánicos más importantes. Se utiliza en la producción de fertilizantes, colorantes, fármacos y explosivos. El método industrial más importante para la producción del ácido nítrico es el proceso Ostwald. Las materias primas, amoníaco y oxígeno molecular, se calientan en presencia de un catalizador de platino-rodio (figura 13.25), aproximadamente a 800°C:

$$4\text{NH}_3(g) + 5\text{O}_2(g) \rightarrow 4\text{NO}(g) + 6\text{H}_2\text{O}(g)$$

El óxido nítrico formado se oxida rápidamente (sin catalizador) en dióxido de nitrógeno:

$$2\text{NO}(g) + \text{O}_2(g) \rightarrow 2\text{NO}_2(g)$$

Cuando se disuelve en agua, el NO₂ forma tanto ácido nitroso como ácido nítrico:

$$2\text{NO}_2(g) + \text{H}_2\text{O}(l) \rightarrow \text{HNO}_2(\text{ac}) + \text{HNO}_3(\text{ac})$$

Por calentamiento, el ácido nitroso se convierte en ácido nítrico como sigue:

$$3\text{HNO}_2(\text{ac}) \rightarrow \text{HNO}_3(\text{ac}) + \text{H}_2\text{O}(l) + 2\text{NO}(g)$$

El NO generado puede recircularse para producir el NO₂ del segundo paso.

Convertidores catalíticos
A altas temperaturas, dentro del motor de un automóvil en marcha, el nitrógeno y el oxígeno gaseosos reaccionan para formar óxido nítrico:

$$\text{N}_2(g) + \text{O}_2(g) \rightarrow 2\text{NO}(g)$$

Cuando se libera a la atmósfera, el NO se combina rápidamente con el O₂ para formar NO₂. El dióxido de nitrógeno y otros gases emitidos por los automóviles, como monóxido de carbono (CO) y varios hidrocarburos que no se quemaron, hacen de las emisiones de un automóvil una fuente importante de contaminación del aire.

La mayor parte de los automóviles nuevos están equipados con convertidores catalíticos (figura 13.26). Un convertidor catalítico eficiente tiene dos propósitos: oxidar el CO y los hidrocarburos que no se quemaron hasta CO$_2$ y H$_2$O y reducir el NO y el NO$_2$ a N$_2$ y O$_2$. Los gases calientes de emisión, a los que se les inyecta aire, pasan a través de la primera cámara de un convertidor para acelerar la combustión completa de los hidrocarburos y disminuir la emisión de CO. (En la figura 13.27 se muestra un corte transversal de un convertidor catalítico.) Sin embargo, debido a que las altas temperaturas aumentan la producción de NO, se requiere de una segunda cámara que contiene un catalizador diferente (un metal de transición o un óxido de un metal de transición, como CuO o Cr₂O₃) que, trabajando a menor temperatura, disocia el NO en N$_2$ y O$_2$ antes de que los gases sean expulsados por el escape.

Catálisis homogénea

En la catálisis homogénea los reactivos y el catalizador están dispersos en una sola fase, generalmente líquida. La catálisis ácida y la básica constituyen los tipos más importantes de catálisis homogénea en disolución líquida. Por ejemplo, la reacción de acetato de etilo con agua para formar ácido acético y etanol ocurre en forma demasiado lenta para ser medida.

\[
\text{CH}_3\text{COO}^-\text{H}_3 + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{COOH} + \text{C}_2\text{H}_5\text{OH}
\]

En ausencia del catalizador, la ley de velocidad está dada por

\[
\text{velocidad} = k[\text{CH}_3\text{COO}^-\text{H}_3]
\]
Sin embargo, la reacción puede ser catalizada por un ácido. En presencia de ácido clorhidrico, la velocidad es mayor y la ley de velocidad está dada por

\[\text{velocidad} = k_c [\text{CH}_3\text{COOC}_2\text{H}_3][\text{H}^+] \]

Observe que debido a que \(k_c > k \), la velocidad está determinada sólo por la fracción de la reacción que está catalizada.

La catalálisis homogénea también puede llevarse a cabo en fase gaseosa. Un ejemplo conocido de reacciones catalizadas en fase gaseosa es el proceso en una cámara de plomo donde muchos años fue el método más importante para la manufactura de ácido sulfúrico. Utilizando azufre como materia prima, se esperaría que la producción de ácido sulfúrico ocurriera según los siguientes pasos:

\[
\begin{align*}
\text{S(s)} + \text{O}_2(g) & \rightarrow \text{SO}_2(g) \\
2\text{SO}_2(g) + \text{O}_2(g) & \rightarrow 2\text{SO}_3(g) \\
\text{H}_2\text{O}(l) + \text{SO}_3(g) & \rightarrow \text{H}_2\text{SO}_4(aq)
\end{align*}
\]

Sin embargo, en realidad el dióxido de azufre no se convierte directamente en trióxido de azufre; la oxidación resulta más eficiente cuando se lleva a cabo en presencia del catalizador dióxido de nitrógeno:

\[
\begin{align*}
2\text{SO}_2(g) + 2\text{NO}_2(g) & \rightarrow 2\text{SO}_3(g) + 2\text{NO}(g) \\
2\text{NO}(g) + \text{O}_2(g) & \rightarrow 2\text{NO}_2(g)
\end{align*}
\]

Reacción global: \(\text{2SO}_2(g) + \text{O}_2(g) \rightarrow 2\text{SO}_3(g) \)

Observe que no existe pérdida neta de NO, en la reacción global, por lo que el NO cumple con los requisitos de un catalizador.

En años recientes, los químicos han dedicado gran esfuerzo en el desarrollo de una clase de compuestos metales que sirvan como catalizadores homogéneos. Estos compuestos son solubles en varios disolventes orgánicos; por lo tanto, son capaces de catalizar reacciones en la misma fase que se estén disueltos los reactivos. Muchos de los procesos que catalizan son orgánicos. Por ejemplo, un compuesto de rodio, de color rojo violeta, \([\text{C}_6\text{H}_5\text{P}]\text{RhCl}\), cataliza la conversión de un doble enlace carbono-carbono a un enlace sencillo, como sigue:

\[\text{C} \equiv \text{C} + \text{H}_2 \rightarrow \text{C} - \text{C} \]

La catalálisis homogénea tiene algunas ventajas sobre la catalálisis heterogénea. Por una parte, las reacciones pueden llevarse a cabo en condiciones atmosféricas, lo que reduce los costos de producción y minimiza la descomposición de productos a altas temperaturas. Además, los catalizadores homogéneos pueden diseñarse para funcionar selectivamente para un tipo de reacción en particular y son más baratos que los metales preciosos (por ejemplo, platino y oro), que se utilizan en la catalálisis heterogénea.

Catálisis enzimática

De todos los procesos complicados que han evolucionado en los sistemas vivos, el más complicado, y al mismo tiempo esencial, es la catalálisis enzimática. Las enzimas son catalizadores biológicos. Lo más asombroso de las enzimas no sólo es que pueden aumentar la velocidad de las reacciones bioquímicas por factores que van de 10^6 a 10^9, sino que también son altamente específicas. Una enzima actúa sólo en determinadas moléculas, llamadas *substratos* (en decir, reactivos), mientras que deja el resto del sistema sin afectar. Se ha
calculado que una célula viva promedio puede contener alrededor de 3 000 enzimas diferentes, cada una de las cuales cataliza una reacción específica en la que un sustrato se convierte en los productos adecuados. La catálisis enzimática es homogénea porque el sustrato y la enzima están presentes en disolución acuosa.

Básicamente, una enzima es una molécula grande de una proteína que contiene uno o más sitios activos, donde se llevan a cabo las interacciones con los sustratos. En forma estructural, estos sitios son complementarios de las moléculas de un sustrato específico, de la misma forma que una llave embona en una cerradura en particular. De hecho, la idea de una estructura rígida de una enzima, que se une sólo con moléculas cuya forma embona exactamente en el sitio activo, es la base de una de las primeras teorías sobre la catálisis enzimática, conocida como teoría de la "cerradura y la llave", desarrollada en 1894 por el químico alemán Emil Fischer (figura 13.28). La hipótesis de Fischer explica la especificidad de las enzimas, pero está en contradicción con la evidencia experimental de que una misma enzima se une con sustratos de diferentes tamaños y formas. En la actualidad, los químicos saben que la molécula de una enzima (o por lo menos su sitio activo) tiene un alto grado de flexibilidad estructural, lo que le permite modificar su forma para acomodar más de un tipo de sustrato. En la figura 13.29 se muestra un modelo molecular de una enzima en acción.

3 Emil Fischer (1852-1919). Químico alemán. Es reconocido por muchos como el químico orgánico más grande del siglo XIX. Fischer realizó importantes contribuciones en el ámbito de la síntesis de los azúcares y otras moléculas importantes. Fue galardonado con el premio Nobel de Química en 1902.

Figura 13.28 Modelo de la cerradura y la llave para la especificidad de una enzima por las moléculas del sustrato.

Figura 13.29 De izquierda a derecha: la unión de una molécula de glucosa (rojo) con la hexocinasa (una enzima de la ruta metabólica). Observe cómo la región del sitio activo encierra a la glucosa después de la unión. Con frecuencia, las geometrías tanto del sustrato como del sitio activo se alteran para acomodar mejor la molécula.
El tratamiento matemático de la cinética enzimática es muy complejo, incluso si se conocen los pasos básicos implicados en la reacción. A través de los siguientes pasos elementales se muestra un esquema simplificado:

\[E + S \xrightleftharpoons[k_{-1}]{k_1} ES \]
\[ES \xrightarrow{k_2} E + P \]

donde E, S y P representan la enzima, el sustrato y el producto, y ES es el intermediario enzima-sustrato. Con cierta frecuencia se supone que la formación de ES y su descomposición en las moléculas de enzima y sustrato es un proceso rápido, y que el paso determinante de la velocidad es la formación del producto.

En general, la velocidad para dichas reacciones está dada por la ecuación

\[\text{velocidad} = \frac{\Delta [P]}{\Delta t} \]
\[= k_2[ES] \]

La concentración del intermediario ES es proporcional a la cantidad presente del sustrato, y una gráfica de la velocidad contra la concentración del sustrato suele formar una curva como la que se observa en la figura 13.30. Al inicio, la velocidad aumenta rápidamente al incrementarse la concentración del sustrato. Sin embargo, sobre ciertos niveles de concentración, todos los sitios activos están ocupados y la reacción se vuelve de orden cero respecto del sustrato. En otras palabras, la velocidad permanece constante, aun cuando se aumente la concentración del sustrato. Por todo esto, la velocidad de formación del producto depende sólo de qué tan rápido se rompe el intermediario ES y no del número de moléculas de sustrato presentes.

Resumen de datos y conceptos

1. La velocidad de una reacción química se manifiesta en el cambio de la concentración de los reactivos o productos con relación al tiempo. La velocidad no es constante, sino que varía continuamente y medida que cambia la concentración.

2. La ley de velocidad es una expresión que relaciona la velocidad de una reacción con la constante de velocidad y las concentraciones de los reactivos, elevadas a las potencias apropiadas. La constante de velocidad \(k \) para determinada reacción cambia sólo con la temperatura.

3. El orden de una reacción respecto de determinado reactivo es la potencia a la cual está elevada la concentración de dicho reactivo en la ley de velocidad. El orden global de una reacción es la suma de las potencias a las que están elevadas las concentraciones de los reactivos en la ley de velocidad. La ley de velocidad y el orden de reacción no se pueden determinar a partir de la estereometría de la ecuación global de la reacción; deben determinarse experimentalmente. Para una reacción de orden cero, la velocidad de reacción es igual a la constante de velocidad.

4. La vida media de una reacción (el tiempo que tarda para que la concentración de un reactivo disminuya a la mitad) puede utilizarse para determinar la constante de velocidad de una reacción de primer orden.

5. De acuerdo con la teoría de las colisiones, una reacción se lleva a cabo cuando las moléculas chocan con la energía suficiente, denominada energía de activación, como para romper los enlaces e iniciar la reacción. La constante de velocidad y la energía de activación se relacionan mediante la ecuación de Arrhenius.

6. La ecuación global balanceada para una reacción debe ser la suma de una serie de reacciones simples, llamadas pasos elementales. La serie completa de pasos elementales para una reacción es el mecanismo de reacción.

7. Si un paso de un mecanismo de reacción es mucho más lento que el resto, es el paso determinante de la velocidad.

8. Por lo general, un catalizador acelera una reacción al disminuir el valor de \(E_a \). Un catalizador puede recuperarse sin cambio al final de la reacción.

9. En la catálisis heterogénea, que es de gran importancia industrial, el catalizador es un sólido y los reactivos son gases o líquidos. En la catálisis homogénea, el catalizador y los reactivos están en la misma fase. Las enzimas son los catalizadores en los sistemas vivos.